

Radio k-chromatic number of cycles for large k

Nathaniel Karst

Mathematics and Science Division, Babson College Babson Park, MA 02457, USA nkarst@babson.edu

Joshua Langowitz

Franklin W. Olin College of Engineering, Olin Way Needham, MA 02492, USA joshua.langowitz@alumni.olin.edu

Jessica Oehrlein

Fu Foundation School of Engineering and Applied Sciences Columbia University, New York, NY 10027, USA jessica.oehrlein@columbia.edu

Denise Sakai Troxell*

Mathematics and Science Division, Babson College Babson Park, MA 02457, USA troxell@babson.edu

> Received 1 August 2016 Revised 27 October 2016 Accepted 26 February 2017 Published 30 March 2017

For a positive integer k, a radio k-labeling of a graph G is a function f from its vertex set to the non-negative integers such that for all pairs of distinct vertices u and w, we have $|f(u) - f(w)| \ge k - d(u, w) + 1$ where d(u, w) is the distance between the vertices u and w in G. The minimum span over all radio k-labelings of G is called the radio k-chromatic number and denoted by $rn_k(G)$. The most extensively studied cases are the classic vertex colorings (k = 1), L(2,1)-labelings (k = 2), radio labelings (k = d, thediameter of G), and radio antipodal labelings (k = d - 1). Determining exact values or tight bounds for $rn_k(G)$ is often non-trivial even within simple families of graphs. We provide general lower bounds for $rn_k(C_n)$ for all cycles C_n when $k \ge d$ and show that these bounds are exact values when k = d + 1.

Keywords: Radio *k*-labeling; radio labeling; radio antipodal labeling; multilevel distance labeling.

Mathematics Subject Classification 2010: 05C78, 05C38

*Corresponding author.

1. Introduction

Given a positive integer k, a function f that assigns a non-negative integer to each vertex of a graph G is called a *radio* k-*labeling of* G if for any pair of distinct vertices u and w in G, we have

$$|f(u) - f(w)| \ge k - d(u, w) + 1,$$

where d(u, w) is the distance between the vertices u and w in G. The span of f is the difference between the largest and smallest integers assigned by f. Of particular interest is the radio k-chromatic number of G which is the minimum span over all radio k-labelings of G and will be denoted $rn_k(G)$. The radio k-labelings are generalizations of some known graph labelings as shown in Table 1, where d is the diameter of G and each row of the table contains the more standard terminology for the given value of k.

The literature on the radio k-chromatic numbers for k = 1, 2 is vast and rich where exact values and tight bounds are known for a large number of families of graphs (for k = 2, refer to [7] and the survey [2]). In contrast, not many papers address the cases where k > 2, with the majority of them focusing on the cases k = d - 1, d. This limited literature may be due to the considerable difficulty in determining $rn_k(G)$ even for graphs as simple as paths and cycles for specific values of k > 2. We list some of these results below.

- The radio k-chromatic number of paths on n vertices is known for $k \ge n$, for k = n 3, and for k = n 4 when n is odd and at least 11 [9, 12]; bounds for this number for $k \le n 3$ are given in [4].
- A lower bound for the radio k-chromatic number of cycles on n vertices is obtained in [15] for $\lceil (n-2)/3 \rceil \le k \le d$.
- The radio number of paths and cycles are provided in [13].
- The radio antipodal number of paths is found in [11, 12]; the radio antipodal number of cycles is given in [8] except when the number of vertices is a multiple of 4 for which only bounds are presented.
- The radio k-chromatic number of stars is given in [9] and is used to derive an upper bound for the radio k-chromatic number of arbitrary trees.
- A lower bound for the radio number of trees as well as tighter bounds for the radio number of spiders are shown in [5].
- In one of the more recent related papers [16], the radio k-chromatic numbers for $k \ge 2$ of complete multi-partite graphs are determined using an upper bound in

k	Radio k -labeling	Radio k-chromatic Number, $rn_k(G)$
1	Classic vertex coloring	Chromatic number, $\chi(G)$
2	L(2,1)-labeling	Lambda number, $\lambda(G)$
d-1	Antipodal labeling	Radio antipodal number, $ac(G)$
d	Radio labeling	Radio number, $rn(G)$

Table 1. Radio k-labelings for k = 1, 2, d - 1, d.

Fig. 1. Near-radio labelings of C_n for n = 3, 7, 11 with spans exactly equal to $rn^*(C_n)$.

terms of the path covering number; this result is a generalization of a similar one for the case k = 2 in [6].

- Bounds on the radio k-chromatic number for $k \leq d-2$ are known for powers of cycles [14], for distance graphs [1], for Cartesian products of graphs (select k) [10], and for bipartite graphs [16].
- Bounds on the radio antipodal number of a graph in terms of its order, diameter, and clique number were given in [3].

Inspired by the radio labelings and radio antipodal labelings, we introduce the notion of near-radio labelings, that is, radio k-labelings where k is one greater than the diameter of the graph. More specifically, a *near-radio labeling* of G is a function f from its vertex set to the non-negative integers such that

$$|f(u) - f(w)| \ge d - d(u, w) + 2$$

for any pair of distinct vertices u and w in G. For simplicity, the $rn_k(G)$ for k = d+1will be denoted $rn^*(G)$. Since $rn^*(P_n)$ where P_n is the path with $n \ge 1$ vertices is known [11, 12], a natural starting point is to focus on $rn^*(C_n)$, where C_n is the cycle with $n \ge 3$ vertices $v_0, v_1, \ldots, v_{n-1}$ such that v_i is adjacent to v_{i+1} for $i = 0, 1, \ldots, n-2, v_0$ is adjacent to v_{n-1} , and the diameter $d = \lfloor n/2 \rfloor$. We were surprised that such a trivial family of graphs provided us with a challenging problem. Figure 1 contains examples of near-radio labelings of C_n for n = 3, 7, 11 with spans exactly equal to $rn^*(C_n)$ (exhaustively verified with a computer program).

In this paper, we first find general lower bounds for $rn_k(C_n)$ for all $n \geq 3$ and $k \geq d$ and subsequently use them to determine the exact values for $rn^*(C_n)$ in our main result, Theorem 1.1. The following function was inspired by a similar one introduced by Liu and Zhu [13] in the context of radio labelings and will be used throughout the paper to simplify the exposition of our work (where q is a non-negative integer):

$$\phi(n) = \begin{cases} q+4 & \text{if } n = 4q+2, \\ q+3 & \text{if } n = 4q+r, \text{ where } r = 0, 1, 3. \end{cases}$$

Theorem 1.1. Let $n = 4q + r \ge 3$ where q and r are integers with $q \ge 0$ and $0 \le r \le 3$. Then the following hold:

(i)
$$r = 0$$
: $rn^*(C_n) = \begin{cases} \phi(n)(n-2)/2 + 2 & \text{if } q \text{ is even,} \\ \phi(n)(n-2)/2 + 3 & \text{if } q \text{ is odd.} \end{cases}$

(ii)
$$r = 1$$
: $rn^*(C_n) = \phi(n)(n-1)/2$.

(iii)
$$r = 2$$
: $rn^*(C_n) = \phi(n)(n-2)/2 + 2$.

(iv)
$$r = 3$$
: $rn^*(C_n) = \begin{cases} \phi(n)(n-1)/2 & \text{if } q \neq 2 \text{ is not a multiple of } 3, \\ \phi(n)(n-1)/2 + 1 & \text{otherwise.} \end{cases}$

Throughout this work we will assume $n \ge 3$ and $k \ge d$. In Sec. 2, we provide general lower bounds for $rn_k(C_n)$ which complement the lower bounds provided by Saha and Panigrahi [15] to include the case k > d. We begin Sec. 3 by presenting necessary and sufficient conditions for a labeling to be a radio k-labeling of C_n when $k \ge d$. In particular, these conditions simplify similar ones presented by Liu and Zhu [13] in the context of radio labelings. We use this characterization for k = d+1to exhibit near-radio labelings that will achieve the lower bounds for $rn^*(C_n)$ found in Sec. 2, concluding the proof of Theorem 1.1. We offer some closing remarks in Sec. 4.

2. Lower Bounds for $rn_k(C_n)$

In this section, we first derive general lower bounds for $rn_k(C_n)$ by defining a useful function on k and n and by manipulating inequalities due to the definition of radio k-labelings. We then increase these bounds by one for certain combinations of values of k and n. As an application for this general methodology, we use these bounds for k = d + 1 to establish lower bounds for $rn^*(C_n)$ which we later show to be exact values in Sec. 3.

Given a radio k-labeling f of C_n , observe that the vertex labels must all be different since we are assuming $k \ge d$. We will use the following conventions through this section:

- $x_0, x_1, \ldots, x_{n-1}$ is the ordering of vertices of C_n where $f(x_i) < f(x_{i+1})$ for $i = 0, 1, \ldots, n-2$; we will assume without loss of generality that $x_0 = v_0$ (otherwise rotate the labels $v_0, v_1, \ldots, v_{n-1}$ around the cycle) and $f(x_0) = 0$;
- π is the permutation so that $x_i = v_{\pi(i)}$ for $i = 0, 1, \ldots, n-1$;
- $f_i = f(x_{i+1}) f(x_i)$ and $d_i = d(x_i, x_{i+1})$ for $i = 0, 1, \dots, n-2$.

Note that $f_i \ge k - d_i + 1$ for i = 0, 1, ..., n-2 and the span of f is $f(x_{n-1}) - f(x_0) = f_0 + f_1 + \cdots + f_{n-2}$. We illustrate these concepts in Table 2 for the near-radio labeling of C_{11} given in Fig. 1.

Define $\Phi(k, n) = \lceil (3k-n+3)/2 \rceil$ (observe that $k \ge d$ implies that 3k-n+3 > 0). Note that this is a generalization of $\phi(n)$ defined just before Theorem 1.1, in the

i	0	1	2	3	4	5	6	7	8	9	10
$f(x_i)$	0	2	5	7	10	12	16	18	21	24	26
f_i	2	3	2	3	2	4	2	3	3	2	-
$\pi(i)$	0	5	9	3	7	1	4	10	6	2	8
d_i	5	4	5	4	5	3	5	4	4	5	-

Table 2. Near-radio labeling of C_{11} given in Fig.1.

sense that $\Phi(k, n) = \phi(n)$ when k = d + 1. The first half of Lemma 2.1 presents a relationship between $\Phi(k, n)$ and the sequence $f_0, f_1, \ldots, f_{n-2}$ that will be useful in providing general lower bounds for $rn_k(C_n)$. Liu and Zhu [13] showed a similar result in the context of radio labelings, that is, for k = d. Our version extends their result to all $k \ge d$ with a slightly simpler proof. The second half of Lemma 2.1 includes an identity related to the sequence $d_0, d_1, \ldots, d_{n-2}$ that will allow us to improve the lower bounds mentioned earlier for select values of k and n.

Lemma 2.1. Let f be a radio k-labeling of C_n . For i = 0, 1, ..., n-3, we have $f_i + f_{i+1} \ge \Phi(k, n)$. In particular, if $f_i + f_{i+1} = \Phi(k, n)$ for an arbitrary i, then $d_i + d_{i+1} = 2k - \Phi(k, n) + 2$ when k and n have different parities.

Proof. From the definition of radio k-labelings, the following three inequalities hold

$$f_i = f(x_{i+1}) - f(x_i) \ge k - d_i + 1$$

$$f_{i+1} = f(x_{i+2}) - f(x_{i+1}) \ge k - d_{i+1} + 1$$

$$f_i + f_{i+1} = f(x_{i+2}) - f(x_i) \ge k - d(x_i, x_{i+2}) + 1.$$

Adding these inequalities, we obtain

$$2(f_i + f_{i+1}) \ge 3k - [d_i + d_{i+1} + d(x_i, x_{i+2})] + 3.$$
(2.1)

Consider the path P starting and ending at vertex x_i and following the vertices on the cycle in the direction which ensures that vertex x_{i+1} will precede x_{i+2} . Let ℓ_1, ℓ_2 and ℓ_3 be the lengths of the sections of P from x_i to x_{i+1} , from x_{i+1} to x_{i+2} , and from x_{i+2} to x_i , respectively. Because

$$n = \ell_1 + \ell_2 + \ell_3 \ge d_i + d_{i+1} + d(x_i, x_{i+2})$$
(2.2)

our earlier inequality (2.1) implies $2(f_i + f_{i+1}) \ge 3k - n + 3$, or $f_i + f_{i+1} \ge \lceil (3k - n + 3)/2 \rceil = \Phi(k, n)$ as desired.

Suppose $f_i + f_{i+1} = \Phi(k, n)$ for an arbitrary i = 0, 1, ..., n-3. Adding the two inequalities $d_i \ge k - f_i + 1$ and $d_{i+1} \ge k - f_{i+1} + 1$, we obtain $d_i + d_{i+1} \ge 2k - (f_i + f_{i+1}) + 2 = 2k - \Phi(k, n) + 2$. To verify the reverse inequality for the desired values of k and n, note that $f_i + f_{i+1} = \Phi(k, n)$ implies that $f(x_{i+2}) - f(x_i) = \Phi(k, n) \ge k - d(x_i, x_{i+2}) + 1$ and therefore $d(x_i, x_{i+2}) \ge k - \Phi(k, n) + 1$. Using the

N. Karst et al.

inequality from (2.2), we obtain

$$n \ge d_i + d_{i+1} + d(x_i, x_{i+2}) \ge d_i + d_{i+1} + k - \Phi(k, n) + 1,$$

which implies $n - k + \Phi(k, n) - 1 \ge d_i + d_{i+1}$. Observe that if k and n have different parities, then 3k - n + 3 is even, thus $\Phi(k, n) = (3k - n + 3)/2$ which then gives

$$2k - \Phi(k, n) + 2 = 2k - 2\Phi(k, n) + \Phi(k, n) + 2$$

= 2k - (3k - n + 3) + $\Phi(k, n) + 2$
= n - k + $\Phi(k, n) - 1$.

Therefore, $d_i + d_{i+1} = 2k - \Phi(k, n) + 2$ as desired.

As a corollary of Lemma 2.1, we find general lower bounds for $rn_k(C_n)$.

Corollary 2.2.

$$rn_k(C_n) \ge \begin{cases} \Phi(k,n)(n-2)/2 + k - d + 1 & \text{if } n \text{ even}, \\ \Phi(k,n)(n-1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Proof. Let f be a radio k-labeling of C_n with span exactly $rn_k(C_n)$. If n is even, then by Lemma 2.1 we have

$$rn_k(C_n) = (f_0 + f_1) + (f_2 + f_3) + \dots + (f_{n-4} + f_{n-3}) + f_{n-2}$$

$$\geq \Phi(k, n)(n-2)/2 + f_{n-2}.$$

Therefore, the desired inequality follows since

$$f_{n-2} = f(x_{n-1}) - f(x_{n-2}) \ge k - d_{n-2} + 1 \ge k - d + 1.$$

On the other hand, if n is odd, then again by Lemma 2.1 we have

$$rn_k(C_n) = (f_0 + f_1) + (f_2 + f_3) + \dots + (f_{n-3} + f_{n-2}) \ge \Phi(k, n)(n-1)/2.$$

Observe that if the two inequalities in the previous corollary are tight, it is straightforward to verify that: $f_{2j} + f_{2j+1} = \Phi(k,n)$ for $j = 0, 1, ..., \lfloor (n - 4)/2 \rfloor$; $f_{n-2} = k - d + 1$ if n is even; and $f_{n-3} + f_{n-2} = \Phi(k,n)$ if n is odd.

The lower bounds given in Corollary 2.2 when k = d are the exact values for the radio number of cycles found by Liu and Zhu [13]. However, for other select values of k and n these lower bounds can be raised by 1 as shown in Propositions 2.5 and 2.6. Before presenting these results, we provide the following auxiliary lemma.

Lemma 2.3. If n is even and f is a radio k-labeling with span $\Phi(k, n)(n-2)/2 + k - d + 1$, then for i = 0, 1, ..., n - 2 we have

(i)
$$f_i = k - d + 1$$
 if *i* even, and $f_i = \Phi(k, n) - (k - d + 1)$ if *i* odd;

(ii) $d_i = d$ if i even, and $d_i = 2k - \Phi(k, n) - d + 2$ if i and k are odd.

Proof. Let us first verify item (i). From Lemma 2.1, $f_{n-3} + f_{n-2} \ge \Phi(k, n)$. But from the observation made right after Corollary 2.2, $f_{n-2} = k - d + 1$, therefore $f_{n-3} \ge \Phi(k, n) - (k - d + 1)$. In addition, $f_{n-4} + f_{n-3} = \Phi(k, n)$ with $f_{n-4} \ge k - d + 1$, hence $f_{n-3} = \Phi(k, n) - (k - d + 1)$ and $f_{n-4} = k - d + 1$. Replacing *n* with $n - 2, n - 4, \ldots, 6, 4$ and repeating this process yields the remaining desired values of f_i .

To verify item (ii), let *i* be an arbitrary even number with $0 \le i \le n-2$. From the definition of radio *k*-labelings, $d_i \ge k - f_i + 1 = d$ where the last equality follows because $f_i = k - d + 1$ from item (i). Therefore $d_i = d$. If $i \le n-3$, $f_i + f_{i+1} = \Phi(k, n)$ from item (i) and since *k* and *n* have different parities, Lemma 2.1 implies $d_i + d_{i+1} = 2k - \Phi(k, n) + 2$ and hence $d_{i+1} = 2k - \Phi(k, n) - d_i + 2 = 2k - \Phi(k, n) - d + 2$.

For the remainder of this work, an arithmetic expression involving integers immediately followed by "(mod n)" indicates that its final value should be taken modulo n, unless the congruence operator " \equiv " precedes the expression, in which case the standard modular arithmetic conventions apply.

Lemma 2.4. If k and n have different parities and f is a radio k-labeling of C_n with span exactly equal to the corresponding lower bound presented in Corollary 2.2, then $\pi(i+1) = \pi(i)+d_i \pmod{n}$ for all i = 0, 1, ..., n-2, or $\pi(i+1) = \pi(i)-d_i \pmod{n}$ for all i = 0, 1, ..., n-2 (recall π is the permutation so that $x_i = v_{\pi(i)}$ for i = 0, 1, ..., n-1 and $x_0 = v_0$).

Proof. First observe that $d_i = d(x_i, x_{i+1}) = d(v_{\pi(i)}, v_{\pi(i+1)})$ which implies $\pi(i+1) = \pi(i) + d_i \pmod{n}$ or $\pi(i+1) = \pi(i) - d_i \pmod{n}$ for each $i = 0, 1, \ldots, n-2$.

Suppose n is even and k is odd. Note that if i is even, then Lemma 2.3 implies that $d_i = d$ and so, because n = 2d, we have $\pi(i) - d_i \equiv \pi(i) + d_i \pmod{n}$. If there exists an odd j where 0 < j < n - 4 so that $\pi(j + 1) = \pi(j) + cd_j \pmod{n}$ and $\pi(j + 3) = \pi(j + 2) - cd_{j+2} \pmod{n}$ where $c = \pm 1$, then $d_{j-1} = d_{j+1} = d$ and $d_j = d_{j+2} = 2k - \Phi(k, n) - d + 2$ from Lemma 2.3, hence

$$\pi(j+3) = \pi(j-1) + d_{j-1} + cd_j + d_{j+1} - cd_{j+2} \pmod{n}$$
$$= \pi(j-1) + 2d \pmod{n} = \pi(j-1),$$

which is impossible as π is a permutation. Therefore, such j does not exist and the proposition follows.

Now, suppose n is odd and k is even. We will initially show that for i even and $0 \le i \le n-3$, if $\pi(i+1) = \pi(i) + d_i \pmod{n}$, then $\pi(i+2) = \pi(i+1) + d_{i+1} \pmod{n}$. Suppose by contradiction that $\pi(i+2) = \pi(i+1) - d_{i+1} \pmod{n}$. From the observation made right after Corollary 2.2, we have that $f_i + f_{i+1} = \Phi(k, n)$ so from Lemma 2.1 we obtain $d_i + d_{i+1} = 2k - \Phi(k, n) + 2 = (k+n+1)/2$. We may assume without loss of generality that $d_{i+1} \ge d_i$ (otherwise switch the roles of d_i and d_{i+1} in the discussion below, excluding the identities involving π). If $d_i \le k/2$, then $d_{i+1} = (k+n+1)/2 - d_i \ge (n+1)/2 > (n-1)/2 = d$, which is impossible. If on the other hand $d_i > k/2$, then

$$d(x_i, x_{i+2}) = d(v_{\pi(i)}, v_{\pi(i+2)}) \le d_{i+1} - d_i < d_{i+1} - k/2 \le d - k/2.$$

(The first inequality follows because $\pi(i+2) = \pi(i) + d_i - d_{i+1} \pmod{n}$ and $d_{i+1} \ge d_i$.) But this implies

$$k - d(x_i, x_{i+2}) + 1 > k - (d - k/2) + 1 = \Phi(k, n) = f_i + f_{i+1} = f(x_{i+2}) - f(x_i),$$

which contradicts the fact that f is a radio k-labeling, so we must have $\pi(i+2) = \pi(i+1) + d_{i+1} \pmod{n}$. Similarly, we can also show that for i even and $0 \le i \le n-3$, if $\pi(i+1) = \pi(i) - d_i \pmod{n}$, then $\pi(i+2) = \pi(i+1) - d_{i+1} \pmod{n}$. If there exists an even j where $0 \le j < n-4$ so that

$$\pi(j+1) = \pi(j) + cd_j \pmod{n},$$

$$\pi(j+3) = \pi(j+2) - cd_{j+2} \pmod{n}$$

where $c = \pm 1$, then

$$\pi(j+2) = \pi(j+1) + cd_{j+1} \pmod{n},$$

$$\pi(j+4) = \pi(j+3) - cd_{j+3} \pmod{n}$$

and therefore

$$\pi(j+4) = \pi(j) + (d_j + d_{j+1}) - (d_{j+2} + d_{j+3}) \pmod{n}$$
$$= \pi(j) + (k+n+1)/2 - (k+n+1)/2 \pmod{n} = \pi(j),$$

which is impossible as π is a permutation. Therefore, such j does not exist, and the proposition follows.

Proposition 2.5. If k and n have different parities and $gcd(n, 2k-\Phi(k, n)+2) > 2$, then

$$rn_k(C_n) \ge \begin{cases} \Phi(k,n)(n-2)/2 + k - d + 2 & \text{if } n \text{ even,} \\ \Phi(k,n)(n-1)/2 + 1 & \text{if } n \text{ odd.} \end{cases}$$

Proof. We will argue by contradiction that there exists a radio k-labeling f with span exactly equal to the corresponding lower bound in Corollary 2.2. By Lemma 2.1 and the observation following Corollary 2.2, we have $d_{2j} + d_{2j+1} = 2k - \Phi(k, n) + 2$ for $j = 0, 1, \ldots, \lfloor (n-4)/2 \rfloor$, and, if n odd, $d_{n-3} + d_{n-2} = 2k - \Phi(k, n) + 2$. We may assume without loss of generality that $\pi(1) = \pi(0) + d_0 \pmod{n}$ (otherwise reverse the order of vertices on the cycle). From Lemma 2.4, $\pi(i+1) = \pi(i) + d_i \pmod{n}$ for all $i = 0, 1, \ldots, n-1$. Let $gcd(n, 2k - \Phi(k, n) + 2) = t > 2$ and choose $\ell = n/t - 1$.

Observe that $2 \le 2\ell + 2 \le n - 1$ (the second inequality is true since $n \ge 3$ and t > 2) and

$$\pi(2\ell+2) = \pi(0) + (d_0 + d_1) + (d_2 + d_3) + \dots + (d_{2\ell} + d_{2\ell+1}) \pmod{n}$$
$$= \pi(0) + (\ell+1)(2k - \Phi(k,n) + 2) \pmod{n}$$
$$= \pi(0) + n(2k - \Phi(k,n) + 2)/t \pmod{n} = \pi(0),$$

which is impossible as π is a permutation. Therefore, the proposition must hold.

The first lower bound in Proposition 2.5 also holds for some other combinations of odd k and even n without having the gcd requirement satisfied, as shown in Proposition 2.6.

Proposition 2.6. If n = 4q where q is a positive integer and and $k \equiv 3 \pmod{4}$, then

$$rn_k(C_n) \ge \Phi(k, n)(n-2)/2 + k - d + 2.$$

Proof. Suppose by contradiction that $rn_k(C_n) < \Phi(k,n)(n-2)/2 + k - d + 2$. By Corollary 2.2, there exists a radio k-labeling f with span $\Phi(k,n)(n-2)/2 + k - d + 1$. Since n is even and k is odd, Lemma 2.3 implies that for $i = 0, 1, \ldots, n-2$: $d_i = d = 2q$ if i is even; and $d_i = 2k - \Phi(k,n) - d + 2 = (k+1)/2$ if i is odd.

We may assume without loss of generality that $\pi(1) = \pi(0) + d_0 \pmod{n}$ (otherwise, reverse the order of vertices on the cycle). From Lemma 2.4, $\pi(i+1) = \pi(i) + d_i \pmod{n}$ for all $i = 0, 1, \ldots, n-2$. Therefore, $\pi(i)$ is even for $i = 0, 1, \ldots, n-1$ because n and all d_i are even (note that $k \equiv 3 \pmod{4}$ implies that (k+1)/2 is even). But this contradicts the fact that π is a permutation of $0, 1, \ldots, n-1$.

We use Corollary 2.2, Propositions 2.5, and 2.6 to provide the lower bounds of $rn^*(C_n)$ in Corollary 2.7.

Corollary 2.7. Let n = 4q + r where q and r are integers with $q \ge 0$ and $0 \le r \le 3$. Then the following hold

(i)
$$r = 0: rn^*(C_n) \ge \begin{cases} \phi(n)(n-2)/2 + 2 & \text{if } q \text{ is even} \\ \phi(n)(n-2)/2 + 3 & \text{if } q \text{ is odd.} \end{cases}$$

(ii)
$$r = 1 : rn^*(C_n) \ge \phi(n)(n-1)/2$$

(iii)
$$r = 2: rn^*(C_n) \ge \phi(n)(n-2)/2 + 2.$$

(iv)
$$r = 3: rn^*(C_n) \ge \begin{cases} \phi(n)(n-1)/2 & \text{if } q \text{ is not a multiple of } 3, \\ \phi(n)(n-1)/2 + 1 & \text{otherwise.} \end{cases}$$

Proof. In the particular case of near-radio labelings, that is k = d + 1, we have $\Phi(k,n) = \phi(n)$ and $rn_k(C_n) = rn^*(C_n)$ as defined in Sec. 1.

In (i) and (iii), n is even, so Corollary 2.2 provides the lower bound $\Phi(k, n)(n - 2)/2 + k - d + 1 = \phi(n)(n - 2)/2 + 2$ for $rn^*(C_n)$. We can add 1 to this bound in (i) when q is odd, since in this case $k \equiv 3 \pmod{4}$ and Proposition 2.6 confirms this larger bound.

In (ii) and (iv), n is odd, so Corollary 2.2 provides the lower bound $\Phi(k, n)(n - 1)/2 = \phi(n)(n - 1)/2$. We can add 1 to this bound in (iv) when q is a multiple of 3, since in this case $gcd(n, 2k - \Phi(k, n) + 2) = gcd(4q + 3, 3q + 3) \ge 3$ and Proposition 2.5 confirms this larger bound.

3. Exact Values for $rn^*(C_n)$

In this section, we will completely characterize $rn^*(C_n)$ for all $n \ge 3$ by exhibiting near-radio labelings of C_n with spans that meet the lower bounds of Corollary 2.7, thus concluding the proof of Theorem 1.1. We address the cases where n = 4q + rfor q a positive integer and r = 0, 1, 2 in Propositions 3.2–3.4, respectively. Note that Fig. 1 shows near-radio labelings with span exactly $rn^*(C_n)$ where n = 4q + 3for q = 0, 2, which were verified exhaustively by a computer program. These instances are not included in the results that follow so they were provided separately. The remaining cases where n = 4q + 3 for integers $q \ge 3$ are more complex and are presented in stages in Propositions 3.6–3.8. The following auxiliary result is instrumental in generating general radio k-labelings of C_n .

Lemma 3.1. Let $f_0, f_1, \ldots, f_{n-2}$ be a sequence of positive integers and let π be a permutation of $\{0, 1, \ldots, n-1\}$ where $\pi(0) = 0$. Define $x_i = v_{\pi(i)}$ for $i = 0, 1, \ldots, n-1$, and consider the function f such that $f(x_0) = 0$ and $f(x_{i+1}) = f(x_i) + f_i$ for $i = 0, 1, \ldots, n-2$. Therefore, f is a radio k-labeling of C_n if and only if the two items below are satisfied

- (i) $f_i \ge k d(x_i, x_{i+1}) + 1;$
- (ii) $f_i + f_{i+1} \ge k d(x_i, x_{i+2}) + 1.$

Proof. If f is a radio k-labeling of C_n , then (i) and (ii) follow from the definition because $f_i = f(x_{i+1}) - f(x_i)$ and $f_i + f_{i+1} = f(x_{i+2}) - f(x_i)$.

Suppose on the other hand that (i) and (ii) hold. To prove that f is a radio k-labeling of C_n , it is enough to show that if $0 \le i < j \le n-1$, then $f(x_j) - f(x_i) = f_i + f_{i+1} + \cdots + f_{j-1} \ge k - d(x_i, x_j) + 1$. If j = i+1 or i+2, then this last inequality is exactly (i) or (ii), respectively. The two cases below complete the proof.

Case 1: j = i + 3. For i, i + 1, and i + 2, the following three inequalities follow from (i):

$$f_i \ge k - d(x_i, x_{i+1}) + 1$$
$$f_{i+1} \ge k - d(x_{i+1}, x_{i+2}) + 1$$
$$f_{i+2} \ge k - d(x_{i+2}, x_{i+3}) + 1$$

Adding these inequalities, we obtain

$$f_i + f_{i+1} + f_{i+2} \ge 3k - [d(x_i, x_{i+1}) + d(x_{i+1}, x_{i+2}) + d(x_{i+2}, x_{i+3})] + 3$$

$$\ge 3k - [n - d(x_i, x_{i+2}) + d(x_{i+2}, x_{i+3})] + 3$$
(a)

$$\geq 3k - [n + d(x_i, x_{i+3})] + 3$$
 (b)

$$\geq 3k - 2d - d(x_i, x_{i+3}) + 2 \tag{c}$$

$$\geq k - d(x_i, x_{i+3}) + 1.$$
 (d)

For each of the respective lower bounds in steps (a) through (d), we used the following facts:

- (a) from the proof of Lemma 2.1, we have $n \ge d(x_i, x_{i+1}) + d(x_{i+1}, x_{i+2}) + d(x_i, x_{i+2})$, or equivalently, $n d(x_i, x_{i+2}) \ge d(x_i, x_{i+1}) + d(x_{i+1}, x_{i+2})$;
- (b) from the triangle inequality, we have $d(x_{i+2}, x_{i+3}) \le d(x_i, x_{i+2}) + d(x_i, x_{i+3})$, or equivalently, $d(x_i, x_{i+3}) \ge -d(x_i, x_{i+2}) + d(x_{i+2}, x_{i+3})$;
- (c) $2d + 1 \ge n;$
- (d) $k \ge d$.

Case 2: $j \ge i + 4$. As (i) and (ii) hold, the same arguments used in the proof of Lemma 2.1 can be applied here to show that $f_i + f_{i+1} \ge \Phi(k, n)$ and $f_{i+2} + f_{i+3} \ge \Phi(k, n)$, and hence

$$f_{i} + f_{i+1} + \dots + f_{j-1} \ge f_{i} + f_{i+1} + f_{i+2} + f_{i+3}$$

$$\ge 2\Phi(k, n)$$

$$= 2\lceil (3k - n + 3)/2 \rceil$$

$$\ge 3k - n + 3$$

$$\ge k - d(x_{i}, x_{j}) + 1.$$

Note that the last inequality can be verified as in Case 1 because of the facts given in (c) and (d), and because $d(x_i, x_j) \ge 1$.

Note that for the case k = d, two additional conditions, other than (i) and (ii) in Lemma 3.1, were mentioned in Liu and Zhu [13], namely: $f_i + f_{i+1} + f_{i+2} \ge d - d(x_i, x_{i+3}) + 1$ and $f_i + f_{i+1} + f_{i+2} + f_{i+3} \ge d$. However, these are not necessary to conclude that f is a radio labeling of C_n as verified in Lemma 3.1.

To prove each of the propositions mentioned in the first paragraph of this section, we will first exhibit two sequences of positive integers $d_0, d_1, \ldots, d_{n-2}$ and $f_0, f_1, \ldots, f_{n-2}$. Based on these sequences, the *associated functions* π and f are defined as follows (these conventions will be used from this point forward):

- $\pi(0) = 0$ and $\pi(i+1) = \pi(i) + d_i \pmod{n}$ for $i = 0, 1, \dots, n-2$;
- $x_i = v_{\pi(i)}$ for $i = 0, 1, \dots, n-1$;
- $f(x_0) = 0$ and $f(x_{i+1}) = f(x_i) + f_i$ for $i = 0, 1, \dots, n-2$.

The proof proceeds with the verification that the associated function π is a permutation of $\{0, 1, \ldots, n-1\}$ so the vertices $x_0, x_1, \ldots, x_{n-1}$ are exactly the

vertices of C_n . To finish the proof, we verify that the associated function f satisfies items (i) and (ii) of Lemma 3.1 when k = d+1, which implies that f is a near-radio labeling of C_n with span $f(x_{n-1})$. This span turns out to match the lower bound of $rn^*(C_n)$ in the respective item of Corollary 2.7 and therefore it is exact.

Proposition 3.2. If n = 4q where q is a positive integer, then

$$rn^{*}(C_{n}) = \begin{cases} \phi(n)(n-2)/2 + 2 & \text{if } q \text{ is even,} \\ \phi(n)(n-2)/2 + 3 & \text{if } q \text{ is odd.} \end{cases}$$

Proof. For i = 0, 1, ..., n - 2, let

$$d_i = \begin{cases} 2q & \text{if } i \text{ even,} \\ q & \text{if } i = 2q - 1 \text{ and } q \text{ odd,} \\ q + 1 & \text{otherwise.} \end{cases}$$

Observe that the associated function π is equivalent to

$$\pi(2j) = j(3q+1) \pmod{n}$$
$$\pi(2j+1) = j(3q+1) + 2q \pmod{n}$$

for $j = 0, 1, \dots, q - 1$, and

$$\pi(2j) = j(3q+1) - (q \mod 2) \pmod{n}$$

$$\pi(2j+1) = j(3q+1) + 2q - (q \mod 2) \pmod{n},$$

for j = q, q+1, ..., 2q-1. Note that when q is odd, $\pi(i)$ is even for i = 0, 1, ..., 2q-1, and $\pi(i)$ is odd for i = 2q, 2q+1, ..., n-1.

We first show that π is a permutation of $\{0, 1, \ldots, n-1\}$. Suppose for contradiction that this is not the case. Let j and j' be non-negative integers smaller than 2q. Because $(3q+1) \equiv -(q-1) \pmod{n}$, we have $(j-j')(3q+1) \equiv (j'-j)(q-1) \pmod{n}$. Without loss of generality, let j' > j. We have to examine two cases:

Case 1: Suppose $\pi(2j) = \pi(2j')$ or $\pi(2j+1) = \pi(2j'+1)$. From the note on the parities of values of $\pi(i)$, either $0 \le j < j' < q$ or $q \le j < j' < 2q$. Then $(j'-j)(q-1) \equiv 0 \pmod{n}$. If q is even, then $\gcd(n, q-1) = \gcd(q, q-1) = 1$, so $(j'-j) \equiv 0 \pmod{n}$. But $0 < j'-j \le 2q-1 < n$, so this is impossible. If q is odd, then $\gcd(n, q-1) = 2$ or 4. Then $\gcd(n/2^t, (q-1)/2^t) = 1$ for some t = 1, 2. Then we have $(j'-j)(q-1)/2^t \equiv 0 \pmod{n/2^t}$, so $(j'-j) \equiv 0 \pmod{n/2^t}$. But recall that when q is odd, $\pi(i)$ is even for $i = 0, 1, \ldots, 2q-1$ and $\pi(i)$ is odd for $i = 2q, 2q + 1, \ldots, n-1$, so $0 \le j < j' \le q-1$ or $q \le j < j' \le 2q-1$. Hence $0 < j'-j \le q-1 < n/4 \le n/2^t$ which contradicts $(j'-j) \equiv 0 \pmod{n/2^t}$.

Case 2: Suppose $\pi(2j) = \pi(2j'+1)$. Then $(j-j')(3q+1) + 2q \equiv 0 \pmod{n}$, or equivalently $(j'-j)(q-1) + 2q \equiv 0 \pmod{n}$. We can rewrite this as (j'-j)(q-1) + 2q = 4qx for some integer x. Then (j'-j)(q-1) = 2q(2qx-1), which yields $(j'-j)(q-1) \equiv 0 \pmod{2q}$. If q is even, then gcd(2q, q-1) = gcd(q, q-1) = 1,

so $(j'-j) \equiv 0 \pmod{2q}$ which is impossible because $0 < j'-j \leq 2q-1 < 2q$. If q is odd, then $(j'-j)(q-1)/2 \equiv 0 \pmod{q}$. But $\gcd(q, (q-1)/2) = 1$, so $(j'-j) \equiv 0 \pmod{q}$ which is impossible because 0 < j'-j < q (as shown at the end of Case 1).

Because we reached a contradiction in both cases, we finally conclude that π is a permutation of $\{0, 1, \ldots, n-1\}$. For $i = 0, 1, \ldots, n-2$, let $f_i = d - d_i + 2$, or more specifically

$$f_i = \begin{cases} 2 & \text{if } i \text{ even,} \\ q+2 & \text{if } i = 2q-1 \text{ and } q \text{ odd,} \\ q+1 & \text{otherwise.} \end{cases}$$

We have for all *i* that $d(x_i, x_{i+1}) = d(v_{\pi(i)}, v_{\pi(i+1)}) = \min\{d_i, n-d_i\} = d_i$, therefore $f_i = d - d(x_i, x_{i+1}) + 2$ so item (i) in Lemma 3.1 is satisfied. By inspection, $d_i + d_{i+1} = 3q$ or 3q + 1, and $f_i + f_{i+1} = q + 3$ or q + 4. Since, $d < d_i + d_{i+1} \le n$, we must have $d(x_i, x_{i+2}) = n - (d_i + d_{i+1})$. Then,

$$f_i + f_{i+1} \ge q + 3 = (3q + 1) - (2q - 2) \ge (d_i + d_{i+1}) - 2q + 2$$
$$= 2q - [4q - (d_i + d_{i+1})] + 2 = d - [n - (d_i + d_{i+1})] + 2$$
$$= d - d(x_i, x_{i+2}) + 2.$$

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the associated function f is a near-radio labeling of C_n . The span of f is $f(x_{n-1}) = \phi(n)(n-2)/2 + 2$ if q is even, and $f(x_{n-1}) = \phi(n)(n-2)/2 + 3$ if q is odd, so the desired result follows from item (i) of Corollary 2.7.

The proofs of Propositions 3.3 and 3.4 use the same sequence of positive integers $d_0, d_1, \ldots, d_{n-2}$ and permutation π used by Liu and Zhu [13] when computing the radio numbers of C_n for n = 4q + 1 and n = 4q + 2, respectively. Therefore, we refer the reader to their work for details on the verifications that π is indeed a permutation of $\{0, 1, \ldots, n-1\}$.

Proposition 3.3. If n = 4q + 1 where q is a positive integer, then

$$rn^*(C_n) = \phi(n)(n-1)/2$$

Proof. For j = 0, 1, ..., q-1, let $d_{4j} = d_{4j+2} = 2q-j$ and $d_{4j+1} = d_{4j+3} = q+1+j$. From Liu and Zhu [13], the associated function π is a permutation of $\{0, 1, ..., n-1\}$.

For i = 0, 1, ..., n-2, let $f_i = d - d_i + 2$. It is straightforward to check that items (i) and (ii) from Lemma 3.1 hold (details are left to the reader) so the associated function f is a near-radio labeling of C_n . The span of f is $f(x_{n-1}) = \phi(n)(n-1)/2$ and the desired result holds from item (ii) of Corollary 2.7.

Proposition 3.4. If n = 4q + 2 where q is a positive integer, then $rn^*(C_n) = \phi(n)(n-2)/2 + 2.$

Proof. For i = 0, 1, ..., n-2, let $d_i = 2q+1$ if i even and $d_i = q+1$ if i odd. From Liu and Zhu [13], the associated function π is a permutation of $\{0, 1, ..., n-1\}$.

For i = 0, 1, ..., n-2, let $f_i = d - d_i + 2$, or more specifically $f_i = 2$ if i even, and $f_i = q + 2$ if i odd. It is straightforward to check that items (i) and (ii) from Lemma 3.1 hold (details are left to the reader) so the associated function f is a near-radio labeling of C_n . The span of f is $f(x_{n-1}) = \phi(n)(n-2)/2 + 2$ and the desired result follows from item (iii) of Corollary 2.7. Therefore, the lemma holds.

Before we proceed to the more complex case n = 4q + 3 for $q \ge 3$, we need an auxiliary result.

Lemma 3.5. Let a and b be two positive integers such that gcd(a,b) = 1. The function g defined as g(0) = 0 and $g(i+1) = g(i) + a \pmod{b}$ for i = 0, 1, ..., b-2 is a permutation of $\{0, 1, ..., b-1\}$.

Proof. Let us assume to the contrary that g is not a permutation of $\{0, 1, \ldots, b-1\}$. Hence there are integers j and j' such that $0 \le j < j' \le b-1$ so that g(j) = g(j'), or equivalently, $(j'-j)a \equiv 0 \pmod{b}$. Since gcd(a,b) = 1, we must have $(j'-j) \equiv 0 \pmod{b}$ which is impossible as 0 < j'-j < b. Therefore, the desired result holds.

Proposition 3.6. If n = 4q + 3 where q is odd, $q \ge 1$, and q is not a multiple of 3, then

$$rn^*(C_n) = \phi(n)(n-1)/2.$$

Proof. For $i = 0, 1, \ldots, n-2$, let $d_i = (3q+3)/2$. Note that gcd((3q+3)/2, n) divides 8(3q+3)/2 - 3n = 3; since gcd((3q+3)/2, n) = 3 could only hold when q is multiple of 3, we must have gcd((3q+3)/2, n) = 1. Therefore, Lemma 3.5 (with a = (3q+3)/2 and b = n) shows that π is a permutation of $\{0, 1, \ldots, n-1\}$.

For i = 0, 1, ..., n-2, let $f_i = d - d_i + 2$ or more specifically $f_i = (q+3)/2$. Observe that

$$d(x_i, x_{i+1}) = d(v_{\pi(i)}, v_{\pi(i+1)}) = \min\{d_i, n - d_i\}$$
$$= \min\{(3q+3)/2, (5q+3)/2\} = d_i,$$

and

$$d(x_i, x_{i+2}) = d(v_{\pi(i)}, v_{\pi(i+2)}) = \min\{2d_i, n - 2d_i\}$$
$$= \min\{3q + 3, q\} = q.$$

Therefore, $f_i = (q+3)/2 = d - d(x_i, x_{i+1}) + 2$ and $f_i + f_{i+1} = q+3 = d - d(x_i, x_{i+2}) + 2$ so items (i) and (ii) in Lemma 3.1 are satisfied, and we conclude that the associated function f is a near-radio labeling of C_n . The span of f is $f(x_{n-1}) = \phi(n)(n-1)/2$ so the desired result follows from item (iv) of Corollary 2.7.

Proposition 3.7. If n = 4q + 3 where q is even, $q \ge 4$, and q is not a multiple of 3, then

$$rn^*(C_n) = \phi(n)(n-1)/2$$

Proof. Define $\pi^*(0) = 0$ and $\pi^*(i+1) = \pi^*(i) + 3q + 3 \pmod{n}$, for $i = 0, 1, \ldots, n-2$. Since gcd(3q+3, n) = 1, we have from Lemma 3.5 (with a = 3q+3 and b = n) that π^* is a permutation of $\{0, 1, \ldots, n-1\}$. We will construct another permutation π of $\{0, 1, \ldots, n-1\}$ based on π^* as follows (we are not abusing the notation here as we will later provide the sequence $d_0, d_1, \ldots, d_{n-2}$ so that π is exactly the associated function). Set s = (n-5)/2 and define

$$\pi(2i) = \pi^*(i) \text{ for } i = 0, 1, \dots, s$$

$$\pi(2i+1) = \pi^*(s+5+i) \text{ for } i = 0, 1, \dots, s-1$$

$$\pi(n-4) = \pi^*(s+3)$$

$$\pi(n-3) = \pi^*(s+1)$$

$$\pi(n-2) = \pi^*(s+4)$$

$$\pi(n-1) = \pi^*(s+2).$$

Informally, the permutation π starts by sequentially alternating the first s + 1 terms of π^* with the last s terms, in order, starting with $\pi^*(0) = 0$; π ends by conveniently arranging the remaining terms $\pi^*(s+j)$ for j = 1, 2, 3, 4, to satisfy the requirements of this proof.

For $j = 0, 1, \ldots, (n-7)/2$, let $d_{2j} = 3q/2 + 3$ and $d_{2j+1} = 3q/2$. In addition, let $d_{n-2} = d_{n-4} = 2q$ and $d_{n-3} = d_{n-5} = q+3$. For $i = 0, 1, \ldots, s-1$, the straightforward computations below, where operations are taken modulo n, show that

$$\pi(2i+1) - \pi(2i) = \pi^*(s+5+i) - \pi^*(i)$$

= $(s+5)(3q+3) = n(3q+3)/2 + 3q/2 + 3$
= $3q/2 + 3 = d_{2i}$
 $\pi(2i+2) - \pi(2i+1) = \pi(2i+2) - (\pi(2i) + 3q/2 + 3)$
= $\pi^*(i+1) - \pi^*(i) - 3q/2 - 3$
= $(3q+3) - 3q/2 - 3 = 3q/2 = d_{2i+1}.$

Furthermore, using similar computations as above to verify the few remaining cases, one can show that $\pi(i+1) = \pi(i) + d_i \pmod{n}$ for all $i = 0, 1, \dots, n-1$, that is, π

is indeed the associated function (we leave the details to the reader for the sake of brevity).

For $i = 0, 1, \ldots, n-2$, let $f_i = d - d_i + 2$ or more specifically: $f_{2j} = q/2$, and $f_{2j+1} = q/2 + 3$ for $j = 0, 1, \ldots, (n-7)/2$; and $f_{n-2} = f_{n-4} = 3$, and $f_{n-3} = f_{n-5} = q$. Observe that $d(x_i, x_{i+1}) = d(v_{\pi(i)}, v_{\pi(i+1)}) = \min\{d_i, n - d_i\} = d_i$ (note that the last equality follows because $d_i \leq d$ when $q \geq 4$) so $f_i = d - d(x_i, x_{i+1}) + 2$ and item (i) in Lemma 3.1 is satisfied. By inspection,

$$d(x_i, x_{i+2}) = d(v_{\pi(i)}, v_{\pi(i_2)})$$

=
$$\begin{cases} \min\{3q+3, n-(3q+3)\} = q & \text{if } i \neq n-6\\ \min\{5q/2+3, n-(5q/2+3)\} = 3q/2 & \text{if } i = n-6 \end{cases}$$

and

$$f_i + f_{i+1} = \begin{cases} q+3 & \text{if } i \neq n-6\\ 3q/2+3 & \text{if } i = n-6. \end{cases}$$

Therefore, $f_i + f_{i+1} \ge d - d(x_i, x_{i+2}) + 2$ so item (ii) in Lemma 3.1 is also satisfied. We can conclude that the associated function f is a near-radio labeling of C_n . The span of f is $f(x_{n-1}) = \phi(n)(n-1)/2$ so the desired result follows from item (iv) of Corollary 2.7.

The case n = 4q + 3 where q is a positive multiple of 3 is more complex since the last third of the sequence of integers d_i has descriptions that are significantly different from the first two thirds.

Proposition 3.8. If n = 4q + 3 where q is a positive multiple of 3, then

 $rn^*(C_n) = \phi(n)(n-1)/2 + 1.$

Proof. Let s = 8q/3 + 1 and for i = 0, 1, ..., s,

$$d_i = \begin{cases} 2q+1 & \text{if } i \text{ even,} \\ q+2 & \text{if } i \text{ odd and } i \neq s, \\ q+1 & \text{if } i=s, \end{cases}$$

and for $j = 0, 1, \dots, q/3 - 1$,

$$d_{(s+1)+4j} = d_{(s+1)+4j+2} = 2q - 3j$$
$$d_{(s+1)+4j+1} = d_{(s+1)+4j+3} = q + 3 + 3j.$$

Observe that for $j = 0, 1, \ldots, (s-1)/2$, the associated function π is equivalent to

$$\pi(2j) = j(3q+3) \pmod{n} = -jq \pmod{n}$$

$$\pi(2j+1) = j(3q+3) + 2q + 1 \pmod{n} = (2-j)q + 1 \pmod{n}.$$

We will show that π is a permutation of $\{0, 1, \ldots, n-1\}$ is three steps:

1750031-16

Step 1: Let us first show that the set $A = \{\pi(i) : i = 0, 1, ..., s\}$ has s + 1 elements. Suppose to the contrary that this is not true. Therefore, there are two distinct non-negative integers j and j' both not exceeding (s-1)/2 = 4q/3 so that one of the two cases below must hold

- $\pi(2j) = \pi(2j')$ or $\pi(2j+1) = \pi(2j'+1)$: From the definition, $(j'-j)q \equiv 0 \pmod{n}$. Because q and n are both multiples of 3, the last congruence implies $(j'-j)q/3 \equiv 0 \pmod{n/3}$. Therefore, since $\gcd(q/3, n/3) = 1$, we must have $(j'-j) \equiv 0 \pmod{n/3}$, but this is impossible as $0 < |j'-j| \le 4q/3 < n/3$.
- $\pi(2j) = \pi(2j'+1)$: From the definition, $(j'-j-2)q+1 \equiv 0 \pmod{n}$. Because q and n are both multiples of 3, the last congruence implies 1 is a multiple of 3, which is also impossible (note that if $a + b \equiv 0 \pmod{c}$) and m divides both a and c, then m must also divide b).

We reached contradictions in both cases, so we conclude that |A| = s + 1.

Step 2: Next, we will show that $\pi(s+1)$ does not belong to A. Suppose for contradiction that it does and set j' = (s+1)/2 = 4q/3 + 1 = n/3. Therefore, there exists an integer $0 \le j \le (s-1)/2 = 4q/3$ distinct from j' so that $\pi(2j') = \pi(2j)$ or $\pi(2j') = \pi(2j+1)$. By definition, $\pi(s+1) = \pi(s) + d_s \pmod{n}$, hence

$$\pi(2j') = \pi(2(j'-1)+1) + (q+1) \pmod{n}$$

= $[(j'-1)(3q+3) + 2q+1] + (q+1) \pmod{n}$
= $j'(3q+3) - 1 \pmod{n} = -j'q - 1 \pmod{n}.$

Then the equalities $\pi(2j') = \pi(2j)$ or $\pi(2j') = \pi(2j+1)$ will imply $(j'-j)q+1 \equiv 0 \pmod{n}$ or $(j'-j+2)q+2 \equiv 0 \pmod{n}$, respectively. Since q and n are both multiples of 3, the former congruence implies 1 is a multiple of 3, and the latter one implies that 2 is multiple of 3, both impossible, so $\pi(s+1)$ does not belong to A.

Step 3: Let $A^* = \{0, 1, \ldots, n-1\} - A$. The objective is to show that $A^* = \{\pi^*(s + i) : i = 1, 2, \ldots, n-s-1\}$ which, together with Steps 1 and 2, allows us to conclude that π is a permutation of $\{0, 1, \ldots, n-1\}$. We will first show that A^* coincides with the set $B = \{2+3i : i = 0, 1, \ldots, 4q/3\}$. We have $|B| = 4q/3 + 1 = n - s - 1 = |A^*|$. Therefore, to verify that $A^* = B$, it is enough to show that every element in B does not belong to A. Suppose this is not true, that is, there are non-negative integers i and j not exceeding 4q/3 such that $\pi(2j) = 2 + 3i$ or $\pi(2j+1) = 2 + 3i$ which imply $[3i+jq]+2 \equiv 0 \pmod{n}$ or $[3i-(2-j)q]+1 \equiv 0 \pmod{n}$, respectively. Since q and n are both multiples of 3, the former congruence implies 2 is a multiple of 3, and the latter implies 1 is a multiple of 3, both impossible. Therefore $A^* = B$. By defining $n^* = |A^*|$ and $q^* = q/3$, we have $n^* = 4q^* + 1$. Consider the auxiliary function π^* on $\{0, 1, \ldots, n^* - 1\}$ such that $\pi^*(0) = 0$ and $\pi^*(i+1) = \pi^*(i) + d_i^* \pmod{n^*}$ for $i = 0, 1, \ldots, n^* - 2$, where $d_i^* = d_{(s+1)+i}/3$ for $i = 0, 1, \ldots, n^* - 2$, or equivalently,

for $j = 0, 1, \dots, q^* - 1$,

$$d_{4j}^* = d_{4j+2}^* = (2q - 3j)/3 = 2q^* - j$$

$$d_{4j+1}^* = d_{4j+3}^* = (q + 3 + 3j)/3 = q^* + 1 + j$$

We previously argued in the proof of Proposition 3.3 that π^* is a permutation of $\{0, 1, \ldots, n^* - 1\}$. From Step 2, we have $\pi(s+1)$ in A^* , thus let l be the integer so that $\pi(s+1) = 2+3l$ and consider the isomorphism h between sets $\{0, 1, \ldots, 4q/3\}$ and A^* such that $h(i) = 2 + 3(l+i) \pmod{n}$. Since $\pi(s+i) = h(\pi^*(i-1))$ for $i = 1, 2, \ldots, n^*$, we can conclude $A^* = \{\pi(s+i) : i = 1, 2, \ldots, n - s - 1\}$.

For $i = 0, 1, \ldots, n-2$, let $f_i = d - d_i + 2$ or more specifically for $i = 0, 1, \ldots, s$,

$$f_i = \begin{cases} 2 & \text{if } i \text{ even,} \\ q+1 & \text{if } i \text{ odd and } i \neq s, \\ q+2 & \text{if } i=s, \end{cases}$$

and for $j = 0, 1, \dots, q/3 - 1$,

$$f_{(s+1)+4j} = f_{(s+1)+4j+2} = 3 + 3j$$

$$f_{(s+1)+4j+1} = f_{(s+1)+4j+3} = q - 3j.$$

Item (i) in Lemma 3.1 is trivially satisfied as $d(x_i, x_{i+1}) = d(v_{\pi(i)}, v_{\pi(i+1)}) = \min\{d_i, n - d_i\} = d_i$ (note that the last equality follows because $d_i \leq d$). By inspection, we have for $i = 0, 1, \ldots, n - 3$:

$$f_i + f_{i+1} = \begin{cases} q+3 & \text{if } (i \le s-2) \text{ or } (i \ge s+1 \text{ and } i-s \text{ not a multiple of } 4), \\ q+4 & \text{if } i = s-1, \\ q+5 & \text{if } i = s, \\ q+6 & \text{otherwise}, \end{cases}$$
$$d_i + d_{i+1} = \begin{cases} 3q+3 & \text{if } (i \le s-2) \text{ or } (i \ge s+1 \text{ and } i-s \text{ not a multiple of } 4), \\ 3q+2 & \text{if } i = s-1, \\ 3q+1 & \text{if } i = s, \\ 3q & \text{otherwise.} \end{cases}$$

Hence $d < 3q < d_i + d_{i+1} \le 3q + 3 < n$, and we must have $d(x_i, x_{i+2}) = n - (d_i + d_{i+1})$. Then

$$f_i + f_{i+1} \ge q + 3 \ge (3q + 3) - 2q \ge (d_i + d_{i+1}) - 2q = d - d(x_i, x_{i+2}) + 2.$$

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the associated function f is a near-radio labeling of C_n with span $f(x_{n-1}) = \phi(n)(n-1)/2+1$. The proposition follows from item (iv) of Corollary 2.7.

4. Closing Remarks

We provide non-trivial lower bounds for the radio k-chromatic numbers of cycles with $n \ge 3$ vertices for all k at least as large as the diameter $d = \lfloor n/2 \rfloor$. These lower bounds coincide with the exact values when k = d as shown in Liu and Zhu [13]. We could also confirm our lower bounds are exact when k = d + 1, but exhibiting radio k-labelings with spans achieving these bounds was considerably challenging in some instances. We conjecture that similar techniques could also be used to find exact radio k-chromatic numbers of cycles for other k > d + 1, but they may not be straightforward extensions of the ones used for the case k = d + 1. The lower bounds' dependence on the relationship between k and n makes it unlikely that a general set of labeling schemes could achieve the radio k-chromatic number for different k.

Acknowledgments

The authors would like to thank Sarah Spence Adams for handling administrative requirements regarding student research credits. The authors are also in debt to the referee for his/her helpful comments and suggestions. Denise Sakai Troxell would like to thank Babson College for its support through the Babson Research Scholar award.

References

- R. Čada, J. Ekstein, P. Holub and O. Togni, Radio labelings of distance graphs, Discrete App. Math. 161(18) (2013) 2876–2884.
- [2] T. Calamoneri, The L(h, k)-labelling problem: A survey and annotated bibliography, Comput. J. **49**(5) (2006) 585–608.
- [3] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127(1) (2002) 57–69.
- [4] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24(1) (2004) 5–21.
- [5] D. Der-Fen Liu, Radio number for trees, *Discrete Math.* **308**(7) (2008) 1153–1164.
- [6] J. P. Georges, D. W. Mauro and M. A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, *Discrete Math.* 135 (1994) 103–111.
- [7] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5(4) (1992) 586–595.
- [8] J. Juan and D. Liu, Antipodal labelings for cycles, Ars Combin. 103 (2012) 81–96.
- M. Kchikech, R. Khennoufa and O. Togni, Linear and cyclic radio k-labelings of trees, Discuss. Math. Graph Theory 27(1) (2007) 105–123.
- [10] M. Kchikech, R. Khennoufa and O. Togni, Radio k-labelings for Cartesian products of graphs, *Discuss. Math. Graph Theory* 28(1) (2008) 165–178.
- [11] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohem. 130(3) (2005) 277–282.
- [12] S. R. Kola and P. Panigrahi, Nearly antipodal chromatic number $ac'(P_n)$ of the path P_n , Math. Bohem. **134**(1) (2009) 77–86.
- [13] D. D.-F. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19(3) (2006) 610–621.

- [14] L. Saha and P. Panigrahi, Antipodal number of some powers of cycles, *Discrete Math.* 312(9) (2012) 1550–1557.
- [15] L. Saha and P. Panigrahi, A lower bound for radio k-chromatic number, Discrete App. Math. 192 (2015) 87–100.
- [16] U. Sarkar and A. Adhikari, On characterizing radio k-coloring problem by path covering problem, *Discrete Math.* 338(4) (2015) 615–620.