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For a positive integer k, a radio k-labeling of a graph G is a function f from its vertex
set to the non-negative integers such that for all pairs of distinct vertices u and w, we
have |f(u) − f(w)| ≥ k − d(u, w) + 1 where d(u, w) is the distance between the vertices
u and w in G. The minimum span over all radio k-labelings of G is called the radio
k-chromatic number and denoted by rnk(G). The most extensively studied cases are
the classic vertex colorings (k = 1), L(2,1)-labelings (k = 2), radio labelings (k = d, the
diameter of G), and radio antipodal labelings (k = d − 1). Determining exact values or
tight bounds for rnk(G) is often non-trivial even within simple families of graphs. We
provide general lower bounds for rnk(Cn) for all cycles Cn when k ≥ d and show that
these bounds are exact values when k = d + 1.
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1. Introduction

Given a positive integer k, a function f that assigns a non-negative integer to each
vertex of a graph G is called a radio k-labeling of G if for any pair of distinct vertices
u and w in G, we have

|f(u) − f(w)| ≥ k − d(u, w) + 1,

where d(u, w) is the distance between the vertices u and w in G. The span of f is
the difference between the largest and smallest integers assigned by f . Of particular
interest is the radio k-chromatic number of G which is the minimum span over
all radio k-labelings of G and will be denoted rnk(G). The radio k-labelings are
generalizations of some known graph labelings as shown in Table 1, where d is the
diameter of G and each row of the table contains the more standard terminology
for the given value of k.

The literature on the radio k-chromatic numbers for k = 1, 2 is vast and rich
where exact values and tight bounds are known for a large number of families of
graphs (for k = 2, refer to [7] and the survey [2]). In contrast, not many papers
address the cases where k > 2, with the majority of them focusing on the cases
k = d − 1, d. This limited literature may be due to the considerable difficulty in
determining rnk(G) even for graphs as simple as paths and cycles for specific values
of k > 2. We list some of these results below.

• The radio k-chromatic number of paths on n vertices is known for k ≥ n, for
k = n − 3, and for k = n − 4 when n is odd and at least 11 [9, 12]; bounds for
this number for k ≤ n − 3 are given in [4].

• A lower bound for the radio k-chromatic number of cycles on n vertices is obtained
in [15] for �(n − 2)/3� ≤ k ≤ d.

• The radio number of paths and cycles are provided in [13].
• The radio antipodal number of paths is found in [11, 12]; the radio antipodal

number of cycles is given in [8] except when the number of vertices is a multiple
of 4 for which only bounds are presented.

• The radio k-chromatic number of stars is given in [9] and is used to derive an
upper bound for the radio k-chromatic number of arbitrary trees.

• A lower bound for the radio number of trees as well as tighter bounds for the
radio number of spiders are shown in [5].

• In one of the more recent related papers [16], the radio k-chromatic numbers for
k ≥ 2 of complete multi-partite graphs are determined using an upper bound in

Table 1. Radio k-labelings for k = 1, 2, d − 1, d.

k Radio k-labeling Radio k-chromatic Number, rnk(G)

1 Classic vertex coloring Chromatic number, χ(G)
2 L(2,1)-labeling Lambda number, λ(G)
d − 1 Antipodal labeling Radio antipodal number, ac(G)
d Radio labeling Radio number, rn(G)
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Fig. 1. Near-radio labelings of Cn for n = 3, 7, 11 with spans exactly equal to rn∗(Cn).

terms of the path covering number; this result is a generalization of a similar one
for the case k = 2 in [6].

• Bounds on the radio k-chromatic number for k ≤ d − 2 are known for powers
of cycles [14], for distance graphs [1], for Cartesian products of graphs (select k)
[10], and for bipartite graphs [16].

• Bounds on the radio antipodal number of a graph in terms of its order, diameter,
and clique number were given in [3].

Inspired by the radio labelings and radio antipodal labelings, we introduce the
notion of near-radio labelings, that is, radio k-labelings where k is one greater than
the diameter of the graph. More specifically, a near-radio labeling of G is a function
f from its vertex set to the non-negative integers such that

|f(u) − f(w)| ≥ d − d(u, w) + 2

for any pair of distinct vertices u and w in G. For simplicity, the rnk(G) for k = d+1
will be denoted rn∗(G). Since rn∗(Pn) where Pn is the path with n ≥ 1 vertices
is known [11, 12], a natural starting point is to focus on rn∗(Cn), where Cn is
the cycle with n ≥ 3 vertices v0, v1, . . . , vn−1 such that vi is adjacent to vi+1 for
i = 0, 1, . . . , n − 2, v0 is adjacent to vn−1, and the diameter d = �n/2�. We were
surprised that such a trivial family of graphs provided us with a challenging problem.
Figure 1 contains examples of near-radio labelings of Cn for n = 3, 7, 11 with spans
exactly equal to rn∗(Cn) (exhaustively verified with a computer program).

In this paper, we first find general lower bounds for rnk(Cn) for all n ≥ 3 and
k ≥ d and subsequently use them to determine the exact values for rn∗(Cn) in
our main result, Theorem 1.1. The following function was inspired by a similar
one introduced by Liu and Zhu [13] in the context of radio labelings and will be
used throughout the paper to simplify the exposition of our work (where q is a
non-negative integer):

φ(n) =
{

q + 4 if n = 4q + 2,
q + 3 if n = 4q + r, where r = 0, 1, 3.

1750031-3
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Theorem 1.1. Let n = 4q + r ≥ 3 where q and r are integers with q ≥ 0 and
0 ≤ r ≤ 3. Then the following hold:

(i) r = 0 : rn∗(Cn) =

{
φ(n)(n − 2)/2 + 2 if q is even,

φ(n)(n − 2)/2 + 3 if q is odd.

(ii) r = 1 : rn∗(Cn) = φ(n)(n − 1)/2.

(iii) r = 2 : rn∗(Cn) = φ(n)(n − 2)/2 + 2.

(iv) r = 3 : rn∗(Cn) =

{
φ(n)(n − 1)/2 if q �= 2 is not a multiple of 3,

φ(n)(n − 1)/2 + 1 otherwise.

Throughout this work we will assume n ≥ 3 and k ≥ d. In Sec. 2, we provide
general lower bounds for rnk(Cn) which complement the lower bounds provided by
Saha and Panigrahi [15] to include the case k > d. We begin Sec. 3 by presenting
necessary and sufficient conditions for a labeling to be a radio k-labeling of Cn when
k ≥ d. In particular, these conditions simplify similar ones presented by Liu and
Zhu [13] in the context of radio labelings. We use this characterization for k = d+1
to exhibit near-radio labelings that will achieve the lower bounds for rn∗(Cn) found
in Sec. 2, concluding the proof of Theorem 1.1. We offer some closing remarks in
Sec. 4.

2. Lower Bounds for rnk(Cn)

In this section, we first derive general lower bounds for rnk(Cn) by defining a useful
function on k and n and by manipulating inequalities due to the definition of radio
k-labelings. We then increase these bounds by one for certain combinations of values
of k and n. As an application for this general methodology, we use these bounds for
k = d + 1 to establish lower bounds for rn∗(Cn) which we later show to be exact
values in Sec. 3.

Given a radio k-labeling f of Cn, observe that the vertex labels must all be
different since we are assuming k ≥ d. We will use the following conventions through
this section:

• x0, x1, . . . , xn−1 is the ordering of vertices of Cn where f(xi) < f(xi+1) for i =
0, 1, . . . , n − 2; we will assume without loss of generality that x0 = v0 (otherwise
rotate the labels v0, v1, . . . , vn−1 around the cycle) and f(x0) = 0;

• π is the permutation so that xi = vπ(i) for i = 0, 1, . . . , n − 1;
• fi = f(xi+1) − f(xi) and di = d(xi, xi+1) for i = 0, 1, . . . , n − 2.

Note that fi ≥ k−di+1 for i = 0, 1, . . . , n−2 and the span of f is f(xn−1)−f(x0) =
f0+f1+· · ·+fn−2. We illustrate these concepts in Table 2 for the near-radio labeling
of C11 given in Fig. 1.

Define Φ(k, n) = �(3k−n+3)/2� (observe that k ≥ d implies that 3k−n+3 > 0).
Note that this is a generalization of φ(n) defined just before Theorem 1.1, in the

1750031-4

D
is

cr
et

e 
M

at
h.

 A
lg

or
ith

m
. A

pp
l. 

20
17

.0
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/0
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 19, 2017 19:43 WSPC/S1793-8309 257-DMAA 1750031

Radio k-chromatic number of cycles for large k

Table 2. Near-radio labeling of C11 given in Fig.1.

i 0 1 2 3 4 5 6 7 8 9 10

f(xi) 0 2 5 7 10 12 16 18 21 24 26
fi 2 3 2 3 2 4 2 3 3 2 -
π(i) 0 5 9 3 7 1 4 10 6 2 8
di 5 4 5 4 5 3 5 4 4 5 -

sense that Φ(k, n) = φ(n) when k = d + 1. The first half of Lemma 2.1 presents a
relationship between Φ(k, n) and the sequence f0, f1, . . . , fn−2 that will be useful
in providing general lower bounds for rnk(Cn). Liu and Zhu [13] showed a similar
result in the context of radio labelings, that is, for k = d. Our version extends their
result to all k ≥ d with a slightly simpler proof. The second half of Lemma 2.1
includes an identity related to the sequence d0, d1, . . . , dn−2 that will allow us to
improve the lower bounds mentioned earlier for select values of k and n.

Lemma 2.1. Let f be a radio k-labeling of Cn. For i = 0, 1, . . . , n − 3, we have
fi + fi+1 ≥ Φ(k, n). In particular, if fi + fi+1 = Φ(k, n) for an arbitrary i, then
di + di+1 = 2k − Φ(k, n) + 2 when k and n have different parities.

Proof. From the definition of radio k-labelings, the following three inequalities
hold

fi = f(xi+1) − f(xi) ≥ k − di + 1

fi+1 = f(xi+2) − f(xi+1) ≥ k − di+1 + 1

fi + fi+1 = f(xi+2) − f(xi) ≥ k − d(xi, xi+2) + 1.

Adding these inequalities, we obtain

2(fi + fi+1) ≥ 3k − [di + di+1 + d(xi, xi+2)] + 3. (2.1)

Consider the path P starting and ending at vertex xi and following the vertices
on the cycle in the direction which ensures that vertex xi+1 will precede xi+2. Let
�1, �2 and �3 be the lengths of the sections of P from xi to xi+1, from xi+1 to xi+2,
and from xi+2 to xi, respectively. Because

n = �1 + �2 + �3 ≥ di + di+1 + d(xi, xi+2) (2.2)

our earlier inequality (2.1) implies 2(fi + fi+1) ≥ 3k − n + 3, or fi + fi+1 ≥ �(3k −
n + 3)/2� = Φ(k, n) as desired.

Suppose fi + fi+1 = Φ(k, n) for an arbitrary i = 0, 1, . . . , n − 3. Adding the
two inequalities di ≥ k − fi + 1 and di+1 ≥ k − fi+1 + 1, we obtain di + di+1 ≥
2k−(fi+fi+1)+2 = 2k−Φ(k, n)+2. To verify the reverse inequality for the desired
values of k and n, note that fi + fi+1 = Φ(k, n) implies that f(xi+2) − f(xi) =
Φ(k, n) ≥ k − d(xi, xi+2) + 1 and therefore d(xi, xi+2) ≥ k −Φ(k, n) + 1. Using the
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inequality from (2.2), we obtain

n ≥ di + di+1 + d(xi, xi+2) ≥ di + di+1 + k − Φ(k, n) + 1,

which implies n−k+Φ(k, n)−1 ≥ di +di+1. Observe that if k and n have different
parities, then 3k − n + 3 is even, thus Φ(k, n) = (3k − n + 3)/2 which then gives

2k − Φ(k, n) + 2 = 2k − 2Φ(k, n) + Φ(k, n) + 2

= 2k − (3k − n + 3) + Φ(k, n) + 2

= n − k + Φ(k, n) − 1.

Therefore, di + di+1 = 2k − Φ(k, n) + 2 as desired.
As a corollary of Lemma 2.1, we find general lower bounds for rnk(Cn).

Corollary 2.2.

rnk(Cn) ≥
{

Φ(k, n)(n − 2)/2 + k − d + 1 if n even,

Φ(k, n)(n − 1)/2 if n odd.

Proof. Let f be a radio k-labeling of Cn with span exactly rnk(Cn). If n is even,
then by Lemma 2.1 we have

rnk(Cn) = (f0 + f1) + (f2 + f3) + · · · + (fn−4 + fn−3) + fn−2

≥ Φ(k, n)(n − 2)/2 + fn−2.

Therefore, the desired inequality follows since

fn−2 = f(xn−1) − f(xn−2) ≥ k − dn−2 + 1 ≥ k − d + 1.

On the other hand, if n is odd, then again by Lemma 2.1 we have

rnk(Cn) = (f0 + f1) + (f2 + f3) + · · · + (fn−3 + fn−2) ≥ Φ(k, n)(n − 1)/2.

Observe that if the two inequalities in the previous corollary are tight, it
is straightforward to verify that: f2j + f2j+1 = Φ(k, n) for j = 0, 1, . . . , �(n −
4)/2�; fn−2 = k − d + 1 if n is even; and fn−3 + fn−2 = Φ(k, n) if n is odd.

The lower bounds given in Corollary 2.2 when k = d are the exact values for the
radio number of cycles found by Liu and Zhu [13]. However, for other select values
of k and n these lower bounds can be raised by 1 as shown in Propositions 2.5 and
2.6. Before presenting these results, we provide the following auxiliary lemma.

Lemma 2.3. If n is even and f is a radio k-labeling with span Φ(k, n)(n− 2)/2 +
k − d + 1, then for i = 0, 1, . . . , n − 2 we have

(i) fi = k − d + 1 if i even, and fi = Φ(k, n) − (k − d + 1) if i odd;
(ii) di = d if i even, and di = 2k − Φ(k, n) − d + 2 if i and k are odd.
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Proof. Let us first verify item (i). From Lemma 2.1, fn−3 + fn−2 ≥ Φ(k, n). But
from the observation made right after Corollary 2.2, fn−2 = k − d + 1, therefore
fn−3 ≥ Φ(k, n)−(k−d+1). In addition, fn−4+fn−3 = Φ(k, n) with fn−4 ≥ k−d+1,
hence fn−3 = Φ(k, n) − (k − d + 1) and fn−4 = k − d + 1. Replacing n with
n − 2, n− 4, . . . , 6, 4 and repeating this process yields the remaining desired values
of fi.

To verify item (ii), let i be an arbitrary even number with 0 ≤ i ≤ n − 2. From
the definition of radio k-labelings, di ≥ k − fi + 1 = d where the last equality
follows because fi = k − d + 1 from item (i). Therefore di = d. If i ≤ n − 3,
fi + fi+1 = Φ(k, n) from item (i) and since k and n have different parities, Lemma
2.1 implies di + di+1 = 2k − Φ(k, n) + 2 and hence di+1 = 2k − Φ(k, n) − di + 2 =
2k − Φ(k, n) − d + 2.

For the remainder of this work, an arithmetic expression involving integers imme-
diately followed by “(mod n)” indicates that its final value should be taken modulo
n, unless the congruence operator “≡” precedes the expression, in which case the
standard modular arithmetic conventions apply.

Lemma 2.4. If k and n have different parities and f is a radio k-labeling of Cn with
span exactly equal to the corresponding lower bound presented in Corollary 2.2, then
π(i+1) = π(i)+di (mod n) for all i = 0, 1, . . . , n−2, or π(i+1) = π(i)−di (mod n)
for all i = 0, 1, . . . , n − 2 (recall π is the permutation so that xi = vπ(i) for i =
0, 1, . . . , n − 1 and x0 = v0).

Proof. First observe that di = d(xi, xi+1) = d(vπ(i), vπ(i+1)) which implies π(i +
1) = π(i) + di (mod n) or π(i + 1) = π(i) − di (mod n) for each i = 0, 1, . . . , n − 2.

Suppose n is even and k is odd. Note that if i is even, then Lemma 2.3 implies
that di = d and so, because n = 2d, we have π(i)− di ≡ π(i) + di (mod n). If there
exists an odd j where 0 < j < n − 4 so that π(j + 1) = π(j) + cdj (mod n) and
π(j + 3) = π(j + 2) − cdj+2 (mod n) where c = ±1, then dj−1 = dj+1 = d and
dj = dj+2 = 2k − Φ(k, n) − d + 2 from Lemma 2.3, hence

π(j + 3) = π(j − 1) + dj−1 + cdj + dj+1 − cdj+2 (mod n)

= π(j − 1) + 2d (mod n) = π(j − 1),

which is impossible as π is a permutation. Therefore, such j does not exist and the
proposition follows.

Now, suppose n is odd and k is even. We will initially show that for i even
and 0 ≤ i ≤ n − 3, if π(i + 1) = π(i) + di (mod n), then π(i + 2) = π(i + 1) +
di+1 (mod n). Suppose by contradiction that π(i+2) = π(i+1)−di+1 (mod n). From
the observation made right after Corollary 2.2, we have that fi + fi+1 = Φ(k, n) so
from Lemma 2.1 we obtain di + di+1 = 2k − Φ(k, n) + 2 = (k + n + 1)/2. We may
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assume without loss of generality that di+1 ≥ di (otherwise switch the roles of di

and di+1 in the discussion below, excluding the identities involving π). If di ≤ k/2,
then di+1 = (k + n + 1)/2− di ≥ (n + 1)/2 > (n− 1)/2 = d, which is impossible. If
on the other hand di > k/2, then

d(xi, xi+2) = d(vπ(i), vπ(i+2)) ≤ di+1 − di < di+1 − k/2 ≤ d − k/2.

(The first inequality follows because π(i + 2) = π(i) + di − di+1 (mod n) and
di+1 ≥ di.) But this implies

k − d(xi, xi+2) + 1 > k − (d − k/2) + 1 = Φ(k, n) = fi + fi+1 = f(xi+2) − f(xi),

which contradicts the fact that f is a radio k-labeling, so we must have π(i + 2) =
π(i+1)+di+1 (mod n). Similarly, we can also show that for i even and 0 ≤ i ≤ n−3,
if π(i + 1) = π(i) − di (mod n), then π(i + 2) = π(i + 1) − di+1 (mod n). If there
exists an even j where 0 ≤ j < n − 4 so that

π(j + 1) = π(j) + cdj (mod n),

π(j + 3) = π(j + 2) − cdj+2 (mod n),

where c = ±1, then

π(j + 2) = π(j + 1) + cdj+1 (mod n),

π(j + 4) = π(j + 3) − cdj+3 (mod n)

and therefore

π(j + 4) = π(j) + (dj + dj+1) − (dj+2 + dj+3) (mod n)

= π(j) + (k + n + 1)/2 − (k + n + 1)/2 (mod n) = π(j),

which is impossible as π is a permutation. Therefore, such j does not exist, and the
proposition follows.

Proposition 2.5. If k and n have different parities and gcd(n, 2k−Φ(k, n)+2) > 2,

then

rnk(Cn) ≥
{

Φ(k, n)(n − 2)/2 + k − d + 2 if n even,

Φ(k, n)(n − 1)/2 + 1 if n odd.

Proof. We will argue by contradiction that there exists a radio k-labeling f with
span exactly equal to the corresponding lower bound in Corollary 2.2. By Lemma 2.1
and the observation following Corollary 2.2, we have d2j + d2j+1 = 2k−Φ(k, n)+ 2
for j = 0, 1, . . . , �(n− 4)/2�, and, if n odd, dn−3 + dn−2 = 2k−Φ(k, n)+2. We may
assume without loss of generality that π(1) = π(0) + d0 (mod n) (otherwise reverse
the order of vertices on the cycle). From Lemma 2.4, π(i + 1) = π(i) + di (mod n)
for all i = 0, 1, . . . , n−1. Let gcd(n, 2k−Φ(k, n)+2) = t > 2 and choose � = n/t−1.
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Observe that 2 ≤ 2� + 2 ≤ n − 1 (the second inequality is true since n ≥ 3 and
t > 2) and

π(2� + 2) = π(0) + (d0 + d1) + (d2 + d3) + · · · + (d2� + d2�+1) (mod n)

= π(0) + (� + 1)(2k − Φ(k, n) + 2) (mod n)

= π(0) + n(2k − Φ(k, n) + 2)/t (mod n) = π(0),

which is impossible as π is a permutation. Therefore, the proposition must
hold.

The first lower bound in Proposition 2.5 also holds for some other combinations
of odd k and even n without having the gcd requirement satisfied, as shown in
Proposition 2.6.

Proposition 2.6. If n = 4q where q is a positive integer and and k ≡ 3 (mod 4),
then

rnk(Cn) ≥ Φ(k, n)(n − 2)/2 + k − d + 2.

Proof. Suppose by contradiction that rnk(Cn) < Φ(k, n)(n− 2)/2 + k − d + 2. By
Corollary 2.2, there exists a radio k-labeling f with span Φ(k, n)(n−2)/2+k−d+1.
Since n is even and k is odd, Lemma 2.3 implies that for i = 0, 1, . . . , n − 2: di =
d = 2q if i is even; and di = 2k − Φ(k, n) − d + 2 = (k + 1)/2 if i is odd.

We may assume without loss of generality that π(1) = π(0)+d0 (mod n) (other-
wise, reverse the order of vertices on the cycle). From Lemma 2.4, π(i+1) = π(i)+
di (mod n) for all i = 0, 1, . . . , n − 2. Therefore, π(i) is even for i = 0, 1, . . . , n − 1
because n and all di are even (note that k ≡ 3 (mod 4) implies that (k + 1)/2 is
even). But this contradicts the fact that π is a permutation of 0, 1, . . . , n − 1.

We use Corollary 2.2, Propositions 2.5, and 2.6 to provide the lower bounds of
rn∗(Cn) in Corollary 2.7.

Corollary 2.7. Let n = 4q+r where q and r are integers with q ≥ 0 and 0 ≤ r ≤ 3.

Then the following hold

(i) r = 0 : rn∗(Cn) ≥
{

φ(n)(n − 2)/2 + 2 if q is even,

φ(n)(n − 2)/2 + 3 if q is odd.

(ii) r = 1 : rn∗(Cn) ≥ φ(n)(n − 1)/2.

(iii) r = 2 : rn∗(Cn) ≥ φ(n)(n − 2)/2 + 2.

(iv) r = 3 : rn∗(Cn) ≥
{

φ(n)(n − 1)/2 if q is not a multiple of 3,

φ(n)(n − 1)/2 + 1 otherwise.

Proof. In the particular case of near-radio labelings, that is k = d + 1, we have
Φ(k, n) = φ(n) and rnk(Cn) = rn∗(Cn) as defined in Sec. 1.
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In (i) and (iii), n is even, so Corollary 2.2 provides the lower bound Φ(k, n)(n−
2)/2+ k− d+1 = φ(n)(n− 2)/2+2 for rn∗(Cn). We can add 1 to this bound in (i)
when q is odd, since in this case k ≡ 3 (mod 4) and Proposition 2.6 confirms this
larger bound.

In (ii) and (iv), n is odd, so Corollary 2.2 provides the lower bound Φ(k, n)(n−
1)/2 = φ(n)(n− 1)/2. We can add 1 to this bound in (iv) when q is a multiple of 3,
since in this case gcd(n, 2k−Φ(k, n)+ 2) = gcd(4q + 3, 3q + 3) ≥ 3 and Proposition
2.5 confirms this larger bound.

3. Exact Values for rn∗(Cn)

In this section, we will completely characterize rn∗(Cn) for all n ≥ 3 by exhibiting
near-radio labelings of Cn with spans that meet the lower bounds of Corollary 2.7,
thus concluding the proof of Theorem 1.1. We address the cases where n = 4q + r

for q a positive integer and r = 0, 1, 2 in Propositions 3.2–3.4, respectively. Note
that Fig. 1 shows near-radio labelings with span exactly rn∗(Cn) where n = 4q +
3 for q = 0, 2, which were verified exhaustively by a computer program. These
instances are not included in the results that follow so they were provided separately.
The remaining cases where n = 4q + 3 for integers q ≥ 3 are more complex and
are presented in stages in Propositions 3.6–3.8. The following auxiliary result is
instrumental in generating general radio k-labelings of Cn.

Lemma 3.1. Let f0, f1, . . . , fn−2 be a sequence of positive integers and let π be a
permutation of {0, 1, . . . , n−1} where π(0) = 0. Define xi = vπ(i) for i = 0, 1, . . . , n−
1, and consider the function f such that f(x0) = 0 and f(xi+1) = f(xi) + fi for
i = 0, 1, . . . , n − 2. Therefore, f is a radio k-labeling of Cn if and only if the two
items below are satisfied

(i) fi ≥ k − d(xi, xi+1) + 1;
(ii) fi + fi+1 ≥ k − d(xi, xi+2) + 1.

Proof. If f is a radio k-labeling of Cn, then (i) and (ii) follow from the definition
because fi = f(xi+1) − f(xi) and fi + fi+1 = f(xi+2) − f(xi).

Suppose on the other hand that (i) and (ii) hold. To prove that f is a radio k-
labeling of Cn, it is enough to show that if 0 ≤ i < j ≤ n− 1, then f(xj)− f(xi) =
fi +fi+1 + · · ·+fj−1 ≥ k−d(xi, xj)+1. If j = i+1 or i+2, then this last inequality
is exactly (i) or (ii), respectively. The two cases below complete the proof.

Case 1: j = i + 3. For i, i + 1, and i + 2, the following three inequalities follow
from (i):

fi ≥ k − d(xi, xi+1) + 1

fi+1 ≥ k − d(xi+1, xi+2) + 1

fi+2 ≥ k − d(xi+2, xi+3) + 1.
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Adding these inequalities, we obtain

fi + fi+1 + fi+2 ≥ 3k − [d(xi, xi+1) + d(xi+1, xi+2) + d(xi+2, xi+3)] + 3

≥ 3k − [n − d(xi, xi+2) + d(xi+2, xi+3)] + 3 (a)

≥ 3k − [n + d(xi, xi+3)] + 3 (b)

≥ 3k − 2d − d(xi, xi+3) + 2 (c)

≥ k − d(xi, xi+3) + 1. (d)

For each of the respective lower bounds in steps (a) through (d), we used the
following facts:

(a) from the proof of Lemma 2.1, we have n ≥ d(xi, xi+1) + d(xi+1, xi+2) +
d(xi, xi+2), or equivalently, n − d(xi, xi+2) ≥ d(xi, xi+1) + d(xi+1, xi+2);

(b) from the triangle inequality, we have d(xi+2, xi+3) ≤ d(xi, xi+2) + d(xi, xi+3),
or equivalently, d(xi, xi+3) ≥ −d(xi, xi+2) + d(xi+2, xi+3);

(c) 2d + 1 ≥ n;
(d) k ≥ d.

Case 2: j ≥ i + 4. As (i) and (ii) hold, the same arguments used in the proof of
Lemma 2.1 can be applied here to show that fi + fi+1 ≥ Φ(k, n) and fi+2 + fi+3 ≥
Φ(k, n), and hence

fi + fi+1 + · · · + fj−1 ≥ fi + fi+1 + fi+2 + fi+3

≥ 2Φ(k, n)

= 2�(3k − n + 3)/2�
≥ 3k − n + 3

≥ k − d(xi, xj) + 1.

Note that the last inequality can be verified as in Case 1 because of the facts given
in (c) and (d), and because d(xi, xj) ≥ 1.

Note that for the case k = d, two additional conditions, other than (i) and (ii)
in Lemma 3.1, were mentioned in Liu and Zhu [13], namely: fi + fi+1 + fi+2 ≥
d−d(xi, xi+3)+1 and fi + fi+1 + fi+2 + fi+3 ≥ d. However, these are not necessary
to conclude that f is a radio labeling of Cn as verified in Lemma 3.1.

To prove each of the propositions mentioned in the first paragraph of this sec-
tion, we will first exhibit two sequences of positive integers d0, d1, . . . , dn−2 and
f0, f1, . . . , fn−2. Based on these sequences, the associated functions π and f are
defined as follows (these conventions will be used from this point forward):

• π(0) = 0 and π(i + 1) = π(i) + di (mod n) for i = 0, 1, . . . , n − 2;
• xi = vπ(i) for i = 0, 1, . . . , n − 1;
• f(x0) = 0 and f(xi+1) = f(xi) + fi for i = 0, 1, . . . , n − 2.

The proof proceeds with the verification that the associated function π is a
permutation of {0, 1, . . . , n − 1} so the vertices x0, x1, . . . , xn−1 are exactly the
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vertices of Cn. To finish the proof, we verify that the associated function f satisfies
items (i) and (ii) of Lemma 3.1 when k = d+1, which implies that f is a near-radio
labeling of Cn with span f(xn−1). This span turns out to match the lower bound
of rn∗(Cn) in the respective item of Corollary 2.7 and therefore it is exact.

Proposition 3.2. If n = 4q where q is a positive integer, then

rn∗(Cn) =

{
φ(n)(n − 2)/2 + 2 if q is even,

φ(n)(n − 2)/2 + 3 if q is odd.

Proof. For i = 0, 1, . . . , n − 2, let

di =




2q if i even,

q if i = 2q − 1 and q odd,

q + 1 otherwise.

Observe that the associated function π is equivalent to

π(2j) = j(3q + 1) (mod n)

π(2j + 1) = j(3q + 1) + 2q (mod n)

for j = 0, 1, . . . , q − 1, and

π(2j) = j(3q + 1) − (q mod 2) (mod n)

π(2j + 1) = j(3q + 1) + 2q − (q mod 2) (mod n),

for j = q, q+1, . . . , 2q−1. Note that when q is odd, π(i) is even for i = 0, 1, . . . , 2q−1,
and π(i) is odd for i = 2q, 2q + 1, . . . , n − 1.

We first show that π is a permutation of {0, 1, . . . , n−1}. Suppose for contradic-
tion that this is not the case. Let j and j′ be non-negative integers smaller than 2q.
Because (3q+1) ≡ −(q−1) (mod n), we have (j−j′)(3q+1) ≡ (j′−j)(q−1) (mod n).
Without loss of generality, let j′ > j. We have to examine two cases:

Case 1: Suppose π(2j) = π(2j′) or π(2j + 1) = π(2j′ + 1). From the note on
the parities of values of π(i), either 0 ≤ j < j′ < q or q ≤ j < j′ < 2q. Then
(j′ − j)(q − 1) ≡ 0 (mod n). If q is even, then gcd(n, q − 1) = gcd(q, q − 1) = 1, so
(j′ − j) ≡ 0 (mod n). But 0 < j′ − j ≤ 2q − 1 < n, so this is impossible. If q is
odd, then gcd(n, q − 1) = 2 or 4. Then gcd(n/2t, (q − 1)/2t) = 1 for some t = 1, 2.
Then we have (j′ − j)(q − 1)/2t ≡ 0 (mod n/2t), so (j′ − j) ≡ 0 (mod n/2t). But
recall that when q is odd, π(i) is even for i = 0, 1, . . . , 2q − 1 and π(i) is odd for
i = 2q, 2q + 1, . . . , n − 1, so 0 ≤ j < j′ ≤ q − 1 or q ≤ j < j′ ≤ 2q − 1. Hence
0 < j′ − j ≤ q − 1 < n/4 ≤ n/2t which contradicts (j′ − j) ≡ 0 (mod n/2t).

Case 2: Suppose π(2j) = π(2j′ + 1). Then (j − j′)(3q + 1) + 2q ≡ 0 (mod n), or
equivalently (j′ − j)(q − 1) + 2q ≡ 0 (mod n). We can rewrite this as (j′ − j)(q −
1) + 2q = 4qx for some integer x. Then (j′ − j)(q − 1) = 2q(2qx − 1), which yields
(j′ − j)(q − 1) ≡ 0 (mod 2q). If q is even, then gcd(2q, q − 1) = gcd(q, q − 1) = 1,
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so (j′ − j) ≡ 0 (mod 2q) which is impossible because 0 < j′ − j ≤ 2q − 1 < 2q.
If q is odd , then (j′ − j)(q − 1)/2 ≡ 0 (mod q). But gcd(q, (q − 1)/2) = 1, so
(j′ − j) ≡ 0 (mod q) which is impossible because 0 < j′ − j < q (as shown at the
end of Case 1).

Because we reached a contradiction in both cases, we finally conclude that π is
a permutation of {0, 1, . . . , n − 1}. For i = 0, 1, . . . , n − 2, let fi = d − di + 2, or
more specifically

fi =




2 if i even,

q + 2 if i = 2q − 1 and q odd,

q + 1 otherwise.

We have for all i that d(xi, xi+1) = d(vπ(i), vπ(i+1)) = min{di, n−di} = di, therefore
fi = d−d(xi, xi+1)+2 so item (i) in Lemma 3.1 is satisfied. By inspection, di+di+1 =
3q or 3q + 1, and fi + fi+1 = q + 3 or q + 4. Since, d < di + di+1 ≤ n, we must have
d(xi, xi+2) = n − (di + di+1). Then,

fi + fi+1 ≥ q + 3 = (3q + 1) − (2q − 2) ≥ (di + di+1) − 2q + 2

= 2q − [4q − (di + di+1)] + 2 = d − [n − (di + di+1)] + 2

= d − d(xi, xi+2) + 2.

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the asso-
ciated function f is a near-radio labeling of Cn. The span of f is f(xn−1) =
φ(n)(n − 2)/2 + 2 if q is even, and f(xn−1) = φ(n)(n − 2)/2 + 3 if q is odd, so
the desired result follows from item (i) of Corollary 2.7.

The proofs of Propositions 3.3 and 3.4 use the same sequence of positive integers
d0, d1, . . . , dn−2 and permutation π used by Liu and Zhu [13] when computing the
radio numbers of Cn for n = 4q + 1 and n = 4q + 2, respectively. Therefore, we
refer the reader to their work for details on the verifications that π is indeed a
permutation of {0, 1, . . . , n − 1}.

Proposition 3.3. If n = 4q + 1 where q is a positive integer, then

rn∗(Cn) = φ(n)(n − 1)/2.

Proof. For j = 0, 1, . . . , q−1, let d4j = d4j+2 = 2q−j and d4j+1 = d4j+3 = q+1+j.
From Liu and Zhu [13], the associated function π is a permutation of {0, 1, . . . , n−1}.

For i = 0, 1, . . . , n−2, let fi = d−di+2. It is straightforward to check that items
(i) and (ii) from Lemma 3.1 hold (details are left to the reader) so the associated
function f is a near-radio labeling of Cn. The span of f is f(xn−1) = φ(n)(n− 1)/2
and the desired result holds from item (ii) of Corollary 2.7.
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Proposition 3.4. If n = 4q + 2 where q is a positive integer, then

rn∗(Cn) = φ(n)(n − 2)/2 + 2.

Proof. For i = 0, 1, . . . , n−2, let di = 2q +1 if i even and di = q +1 if i odd. From
Liu and Zhu [13], the associated function π is a permutation of {0, 1, . . . , n − 1}.

For i = 0, 1, . . . , n − 2, let fi = d − di + 2, or more specifically fi = 2 if i even,
and fi = q + 2 if i odd. It is straightforward to check that items (i) and (ii) from
Lemma 3.1 hold (details are left to the reader) so the associated function f is a
near-radio labeling of Cn. The span of f is f(xn−1) = φ(n)(n − 2)/2 + 2 and the
desired result follows from item (iii) of Corollary 2.7. Therefore, the lemma holds.

Before we proceed to the more complex case n = 4q + 3 for q ≥ 3, we need an
auxiliary result.

Lemma 3.5. Let a and b be two positive integers such that gcd(a, b) = 1. The
function g defined as g(0) = 0 and g(i+1) = g(i)+ a (mod b) for i = 0, 1, . . . , b− 2
is a permutation of {0, 1, . . . , b − 1}.

Proof. Let us assume to the contrary that g is not a permutation of {0, 1, . . . , b−1}.
Hence there are integers j and j′ such that 0 ≤ j < j′ ≤ b − 1 so that g(j) = g(j′),
or equivalently, (j′ − j)a ≡ 0 (mod b). Since gcd(a, b) = 1, we must have (j′ − j) ≡
0 (mod b) which is impossible as 0 < j′ − j < b. Therefore, the desired result
holds.

Proposition 3.6. If n = 4q + 3 where q is odd, q ≥ 1, and q is not a multiple of
3, then

rn∗(Cn) = φ(n)(n − 1)/2.

Proof. For i = 0, 1, . . . , n − 2, let di = (3q + 3)/2. Note that gcd((3q + 3)/2, n)
divides 8(3q + 3)/2 − 3n = 3; since gcd((3q + 3)/2, n) = 3 could only hold when q

is multiple of 3, we must have gcd((3q + 3)/2, n) = 1. Therefore, Lemma 3.5 (with
a = (3q + 3)/2 and b = n) shows that π is a permutation of {0, 1, . . . , n − 1}.

For i = 0, 1, . . . , n − 2, let fi = d − di + 2 or more specifically fi = (q + 3)/2.
Observe that

d(xi, xi+1) = d(vπ(i), vπ(i+1)) = min{di, n − di}
= min{(3q + 3)/2, (5q + 3)/2} = di,

and

d(xi, xi+2) = d(vπ(i), vπ(i+2)) = min{2di, n − 2di}
= min{3q + 3, q} = q.

Therefore, fi = (q+3)/2 = d−d(xi, xi+1)+2 and fi+fi+1 = q+3 = d−d(xi, xi+2)+2
so items (i) and (ii) in Lemma 3.1 are satisfied, and we conclude that the associated
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function f is a near-radio labeling of Cn. The span of f is f(xn−1) = φ(n)(n− 1)/2
so the desired result follows from item (iv) of Corollary 2.7.

Proposition 3.7. If n = 4q + 3 where q is even, q ≥ 4, and q is not a multiple of
3, then

rn∗(Cn) = φ(n)(n − 1)/2.

Proof. Define π∗(0) = 0 and π∗(i+1) = π∗(i)+3q+3 (mod n), for i = 0, 1, . . . , n−
2. Since gcd(3q + 3, n) = 1, we have from Lemma 3.5 (with a = 3q + 3 and b = n)
that π∗ is a permutation of {0, 1, . . . , n−1}. We will construct another permutation
π of {0, 1, . . . , n−1} based on π∗ as follows (we are not abusing the notation here as
we will later provide the sequence d0, d1, . . . , dn−2 so that π is exactly the associated
function). Set s = (n − 5)/2 and define

π(2i) = π∗(i) for i = 0, 1, . . . , s

π(2i + 1) = π∗(s + 5 + i) for i = 0, 1, . . . , s − 1

π(n − 4) = π∗(s + 3)

π(n − 3) = π∗(s + 1)

π(n − 2) = π∗(s + 4)

π(n − 1) = π∗(s + 2).

Informally, the permutation π starts by sequentially alternating the first s+1 terms
of π∗ with the last s terms, in order, starting with π∗(0) = 0; π ends by conveniently
arranging the remaining terms π∗(s+j) for j = 1, 2, 3, 4, to satisfy the requirements
of this proof.

For j = 0, 1, . . . , (n − 7)/2, let d2j = 3q/2 + 3 and d2j+1 = 3q/2. In addition,
let dn−2 = dn−4 = 2q and dn−3 = dn−5 = q + 3. For i = 0, 1, . . . , s − 1, the
straightforward computations below, where operations are taken modulo n, show
that

π(2i + 1) − π(2i) = π∗(s + 5 + i) − π∗(i)

= (s + 5)(3q + 3) = n(3q + 3)/2 + 3q/2 + 3

= 3q/2 + 3 = d2i

π(2i + 2) − π(2i + 1) = π(2i + 2) − (π(2i) + 3q/2 + 3)

= π∗(i + 1) − π∗(i) − 3q/2 − 3

= (3q + 3) − 3q/2 − 3 = 3q/2 = d2i+1.

Furthermore, using similar computations as above to verify the few remaining cases,
one can show that π(i + 1) = π(i) + di (mod n) for all i = 0, 1, . . . , n− 1, that is, π
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is indeed the associated function (we leave the details to the reader for the sake of
brevity).

For i = 0, 1, . . . , n − 2, let fi = d − di + 2 or more specifically: f2j = q/2, and
f2j+1 = q/2 + 3 for j = 0, 1, . . . , (n − 7)/2; and fn−2 = fn−4 = 3, and fn−3 =
fn−5 = q. Observe that d(xi, xi+1) = d(vπ(i), vπ(i+1)) = min{di, n − di} = di (note
that the last equality follows because di ≤ d when q ≥ 4) so fi = d−d(xi, xi+1)+2
and item (i) in Lemma 3.1 is satisfied. By inspection,

d(xi, xi+2) = d(vπ(i), vπ(i2))

=

{
min{3q + 3, n− (3q + 3)} = q if i �= n − 6,

min{5q/2 + 3, n− (5q/2 + 3)} = 3q/2 if i = n − 6,

and

fi + fi+1 =

{
q + 3 if i �= n − 6,

3q/2 + 3 if i = n − 6.

Therefore, fi + fi+1 ≥ d− d(xi, xi+2)+ 2 so item (ii) in Lemma 3.1 is also satisfied.
We can conclude that the associated function f is a near-radio labeling of Cn. The
span of f is f(xn−1) = φ(n)(n− 1)/2 so the desired result follows from item (iv) of
Corollary 2.7.

The case n = 4q + 3 where q is a positive multiple of 3 is more complex since
the last third of the sequence of integers di has descriptions that are significantly
different from the first two thirds.

Proposition 3.8. If n = 4q + 3 where q is a positive multiple of 3, then

rn∗(Cn) = φ(n)(n − 1)/2 + 1.

Proof. Let s = 8q/3 + 1 and for i = 0, 1, . . . , s,

di =




2q + 1 if i even,

q + 2 if i odd and i �= s,

q + 1 if i = s,

and for j = 0, 1, . . . , q/3 − 1,

d(s+1)+4j = d(s+1)+4j+2 = 2q − 3j

d(s+1)+4j+1 = d(s+1)+4j+3 = q + 3 + 3j.

Observe that for j = 0, 1, . . . , (s − 1)/2, the associated function π is equivalent to

π(2j) = j(3q + 3) (mod n) = −jq (mod n)

π(2j + 1) = j(3q + 3) + 2q + 1 (mod n) = (2 − j)q + 1 (mod n).

We will show that π is a permutation of {0, 1, . . . , n − 1} is three steps:
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Step 1: Let us first show that the set A = {π(i) : i = 0, 1, . . . , s} has s + 1
elements. Suppose to the contrary that this is not true. Therefore, there are two
distinct non-negative integers j and j′ both not exceeding (s− 1)/2 = 4q/3 so that
one of the two cases below must hold

• π(2j) = π(2j′) or π(2j + 1) = π(2j′ + 1): From the definition, (j′ − j)q ≡
0 (mod n). Because q and n are both multiples of 3, the last congruence implies
(j′ − j)q/3 ≡ 0 (mod n/3). Therefore, since gcd(q/3, n/3) = 1, we must have
(j′ − j) ≡ 0 (mod n/3), but this is impossible as 0 < |j′ − j| ≤ 4q/3 < n/3.

• π(2j) = π(2j′ + 1): From the definition, (j′ − j − 2)q + 1 ≡ 0 (mod n). Because
q and n are both multiples of 3, the last congruence implies 1 is a multiple of 3,
which is also impossible (note that if a + b ≡ 0 (mod c) and m divides both a

and c, then m must also divide b).

We reached contradictions in both cases, so we conclude that |A| = s + 1.

Step 2: Next, we will show that π(s + 1) does not belong to A. Suppose for con-
tradiction that it does and set j′ = (s + 1)/2 = 4q/3 + 1 = n/3. Therefore, there
exists an integer 0 ≤ j ≤ (s − 1)/2 = 4q/3 distinct from j′ so that π(2j′) = π(2j)
or π(2j′) = π(2j + 1). By definition, π(s + 1) = π(s) + ds (mod n), hence

π(2j′) = π(2(j′ − 1) + 1) + (q + 1) (mod n)

= [(j′ − 1)(3q + 3) + 2q + 1] + (q + 1) (mod n)

= j′(3q + 3) − 1 (mod n) = −j′q − 1 (mod n).

Then the equalities π(2j′) = π(2j) or π(2j′) = π(2j + 1) will imply (j′ − j)q + 1 ≡
0 (mod n) or (j′ − j + 2)q + 2 ≡ 0 (mod n), respectively. Since q and n are both
multiples of 3, the former congruence implies 1 is a multiple of 3, and the latter one
implies that 2 is multiple of 3, both impossible, so π(s + 1) does not belong to A.

Step 3: Let A∗ = {0, 1, . . . , n−1}−A. The objective is to show that A∗ = {π∗(s+
i) : i = 1, 2, . . . , n−s−1} which, together with Steps 1 and 2, allows us to conclude
that π is a permutation of {0, 1, . . . , n−1}. We will first show that A∗ coincides with
the set B = {2+3i : i = 0, 1, . . . , 4q/3}. We have |B| = 4q/3+1 = n−s−1 = |A∗|.
Therefore, to verify that A∗ = B, it is enough to show that every element in B does
not belong to A. Suppose this is not true, that is, there are non-negative integers i

and j not exceeding 4q/3 such that π(2j) = 2+3i or π(2j +1) = 2+3i which imply
[3i+ jq]+2 ≡ 0 (mod n) or [3i− (2− j)q]+1 ≡ 0 (mod n), respectively. Since q and
n are both multiples of 3, the former congruence implies 2 is a multiple of 3, and the
latter implies 1 is a multiple of 3, both impossible. Therefore A∗ = B. By defining
n∗ = |A∗| and q∗ = q/3, we have n∗ = 4q∗ + 1. Consider the auxiliary function π∗

on {0, 1, . . . , n∗ − 1} such that π∗(0) = 0 and π∗(i + 1) = π∗(i) + d∗i (mod n∗) for
i = 0, 1, . . . , n∗ − 2, where d∗i = d(s+1)+i/3 for i = 0, 1, . . . , n∗ − 2, or equivalently,
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for j = 0, 1, . . . , q∗ − 1,

d∗4j = d∗4j+2 = (2q − 3j)/3 = 2q∗ − j

d∗4j+1 = d∗4j+3 = (q + 3 + 3j)/3 = q∗ + 1 + j.

We previously argued in the proof of Proposition 3.3 that π∗ is a permutation of
{0, 1, . . . , n∗ − 1}. From Step 2, we have π(s + 1) in A∗, thus let l be the integer so
that π(s+1) = 2+3l and consider the isomorphism h between sets {0, 1, . . . , 4q/3}
and A∗ such that h(i) = 2 + 3(l + i) (mod n). Since π(s + i) = h(π∗(i − 1)) for
i = 1, 2, . . . , n∗, we can conclude A∗ = {π(s + i) : i = 1, 2, . . . , n − s − 1}.

For i = 0, 1, . . . , n− 2, let fi = d− di + 2 or more specifically for i = 0, 1, . . . , s,

fi =




2 if i even,

q + 1 if i odd and i �= s,

q + 2 if i = s,

and for j = 0, 1, . . . , q/3 − 1,

f(s+1)+4j = f(s+1)+4j+2 = 3 + 3j

f(s+1)+4j+1 = f(s+1)+4j+3 = q − 3j.

Item (i) in Lemma 3.1 is trivially satisfied as d(xi, xi+1) = d(vπ(i), vπ(i+1)) =
min{di, n − di} = di (note that the last equality follows because di ≤ d). By
inspection, we have for i = 0, 1, . . . , n − 3:

fi + fi+1 =




q + 3 if (i ≤ s − 2) or (i ≥ s + 1 and i − s not a multiple of 4),

q + 4 if i = s − 1,

q + 5 if i = s,

q + 6 otherwise,

di + di+1 =




3q + 3 if (i ≤ s − 2) or (i ≥ s + 1 and i − s not a multiple of 4),

3q + 2 if i = s − 1,

3q + 1 if i = s,

3q otherwise.

Hence d < 3q < di + di+1 ≤ 3q + 3 < n, and we must have d(xi, xi+2) = n − (di +
di+1). Then

fi + fi+1 ≥ q + 3 ≥ (3q + 3) − 2q ≥ (di + di+1) − 2q = d − d(xi, xi+2) + 2.

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the associ-
ated function f is a near-radio labeling of Cn with span f(xn−1) = φ(n)(n−1)/2+1.
The proposition follows from item (iv) of Corollary 2.7.
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4. Closing Remarks

We provide non-trivial lower bounds for the radio k-chromatic numbers of cycles
with n ≥ 3 vertices for all k at least as large as the diameter d = �n/2�. These lower
bounds coincide with the exact values when k = d as shown in Liu and Zhu [13].
We could also confirm our lower bounds are exact when k = d + 1, but exhibiting
radio k-labelings with spans achieving these bounds was considerably challenging
in some instances. We conjecture that similar techniques could also be used to find
exact radio k-chromatic numbers of cycles for other k > d + 1, but they may not
be straightforward extensions of the ones used for the case k = d + 1. The lower
bounds’ dependence on the relationship between k and n makes it unlikely that
a general set of labeling schemes could achieve the radio k-chromatic number for
different k.
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