# Radio $k$-chromatic number of cycles for large $k$ 

Nathaniel Karst<br>Mathematics and Science Division, Babson College<br>Babson Park, MA 02457, USA<br>nkarst@babson.edu<br>Joshua Langowitz<br>Franklin W. Olin College of Engineering, Olin Way<br>Needham, MA 02492, USA<br>joshua.langowitz@alumni.olin.edu<br>Jessica Oehrlein<br>Fu Foundation School of Engineering and Applied Sciences Columbia University, New York, NY 10027, USA<br>jessica.oehrlein@columbia.edu<br>Denise Sakai Troxell*<br>Mathematics and Science Division, Babson College<br>Babson Park, MA 02457, USA<br>troxell@babson.edu

Received 1 August 2016
Revised 27 October 2016
Accepted 26 February 2017
Published 30 March 2017

For a positive integer $k$, a radio $k$-labeling of a graph $G$ is a function $f$ from its vertex set to the non-negative integers such that for all pairs of distinct vertices $u$ and $w$, we have $|f(u)-f(w)| \geq k-\mathrm{d}(u, w)+1$ where $\mathrm{d}(u, w)$ is the distance between the vertices $u$ and $w$ in $G$. The minimum span over all radio $k$-labelings of $G$ is called the radio $k$-chromatic number and denoted by $r n_{k}(G)$. The most extensively studied cases are the classic vertex colorings $(k=1), L(2,1)$-labelings $(k=2)$, radio labelings $(k=d$, the diameter of $G$ ), and radio antipodal labelings $(k=d-1)$. Determining exact values or tight bounds for $r n_{k}(G)$ is often non-trivial even within simple families of graphs. We provide general lower bounds for $r n_{k}\left(C_{n}\right)$ for all cycles $C_{n}$ when $k \geq d$ and show that these bounds are exact values when $k=d+1$.

Keywords: Radio $k$-labeling; radio labeling; radio antipodal labeling; multilevel distance labeling.

Mathematics Subject Classification 2010: 05C78, 05C38

* Corresponding author.


## 1. Introduction

Given a positive integer $k$, a function $f$ that assigns a non-negative integer to each vertex of a graph $G$ is called a radio $k$-labeling of $G$ if for any pair of distinct vertices $u$ and $w$ in $G$, we have

$$
|f(u)-f(w)| \geq k-\mathrm{d}(u, w)+1
$$

where $\mathrm{d}(u, w)$ is the distance between the vertices $u$ and $w$ in $G$. The span of $f$ is the difference between the largest and smallest integers assigned by $f$. Of particular interest is the radio $k$-chromatic number of $G$ which is the minimum span over all radio $k$-labelings of $G$ and will be denoted $r n_{k}(G)$. The radio $k$-labelings are generalizations of some known graph labelings as shown in Table 1 , where $d$ is the diameter of $G$ and each row of the table contains the more standard terminology for the given value of $k$.

The literature on the radio $k$-chromatic numbers for $k=1,2$ is vast and rich where exact values and tight bounds are known for a large number of families of graphs (for $k=2$, refer to [7] and the survey [2]). In contrast, not many papers address the cases where $k>2$, with the majority of them focusing on the cases $k=d-1, d$. This limited literature may be due to the considerable difficulty in determining $r n_{k}(G)$ even for graphs as simple as paths and cycles for specific values of $k>2$. We list some of these results below.

- The radio $k$-chromatic number of paths on $n$ vertices is known for $k \geq n$, for $k=n-3$, and for $k=n-4$ when $n$ is odd and at least 11 [9, 12]; bounds for this number for $k \leq n-3$ are given in (4].
- A lower bound for the radio $k$-chromatic number of cycles on $n$ vertices is obtained in [15] for $\lceil(n-2) / 3\rceil \leq k \leq d$.
- The radio number of paths and cycles are provided in [13.
- The radio antipodal number of paths is found in [11, 12]; the radio antipodal number of cycles is given in [8] except when the number of vertices is a multiple of 4 for which only bounds are presented.
- The radio $k$-chromatic number of stars is given in 9 and is used to derive an upper bound for the radio $k$-chromatic number of arbitrary trees.
- A lower bound for the radio number of trees as well as tighter bounds for the radio number of spiders are shown in [5].
- In one of the more recent related papers [16], the radio $k$-chromatic numbers for $k \geq 2$ of complete multi-partite graphs are determined using an upper bound in

Table 1. Radio $k$-labelings for $k=1,2, d-1, d$.

| $k$ | Radio $k$-labeling | Radio $k$-chromatic Number, $r n_{k}(G)$ |
| :--- | :--- | :--- |
| 1 | Classic vertex coloring | Chromatic number, $\chi(G)$ |
| 2 | L(2,1)-labeling | Lambda number, $\lambda(G)$ |
| $d-1$ | Antipodal labeling | Radio antipodal number, $a c(G)$ |
| $d$ | Radio labeling | Radio number, $r n(G)$ |



Fig. 1. Near-radio labelings of $C_{n}$ for $n=3,7,11$ with spans exactly equal to $r n^{*}\left(C_{n}\right)$.
terms of the path covering number; this result is a generalization of a similar one for the case $k=2$ in [6].

- Bounds on the radio $k$-chromatic number for $k \leq d-2$ are known for powers of cycles [14], for distance graphs [1], for Cartesian products of graphs (select $k$ ) [10], and for bipartite graphs [16].
- Bounds on the radio antipodal number of a graph in terms of its order, diameter, and clique number were given in [3].

Inspired by the radio labelings and radio antipodal labelings, we introduce the notion of near-radio labelings, that is, radio $k$-labelings where $k$ is one greater than the diameter of the graph. More specifically, a near-radio labeling of $G$ is a function $f$ from its vertex set to the non-negative integers such that

$$
|f(u)-f(w)| \geq d-\mathrm{d}(u, w)+2
$$

for any pair of distinct vertices $u$ and $w$ in $G$. For simplicity, the $r n_{k}(G)$ for $k=d+1$ will be denoted $r n^{*}(G)$. Since $r n^{*}\left(P_{n}\right)$ where $P_{n}$ is the path with $n \geq 1$ vertices is known [11, 12, a natural starting point is to focus on $r n^{*}\left(C_{n}\right)$, where $C_{n}$ is the cycle with $n \geq 3$ vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ such that $v_{i}$ is adjacent to $v_{i+1}$ for $i=0,1, \ldots, n-2, v_{0}$ is adjacent to $v_{n-1}$, and the diameter $d=\lfloor n / 2\rfloor$. We were surprised that such a trivial family of graphs provided us with a challenging problem. Figure 1 contains examples of near-radio labelings of $C_{n}$ for $n=3,7,11$ with spans exactly equal to $r n^{*}\left(C_{n}\right)$ (exhaustively verified with a computer program).

In this paper, we first find general lower bounds for $r n_{k}\left(C_{n}\right)$ for all $n \geq 3$ and $k \geq d$ and subsequently use them to determine the exact values for $r n^{*}\left(C_{n}\right)$ in our main result, Theorem 1.1. The following function was inspired by a similar one introduced by Liu and Zhu [13] in the context of radio labelings and will be used throughout the paper to simplify the exposition of our work (where $q$ is a non-negative integer):

$$
\phi(n)= \begin{cases}q+4 & \text { if } n=4 q+2 \\ q+3 & \text { if } n=4 q+r, \text { where } r=0,1,3\end{cases}
$$

Theorem 1.1. Let $n=4 q+r \geq 3$ where $q$ and $r$ are integers with $q \geq 0$ and $0 \leq r \leq 3$. Then the following hold:
(i) $\quad r=0: r n^{*}\left(C_{n}\right)= \begin{cases}\phi(n)(n-2) / 2+2 & \text { if } q \text { is even, } \\ \phi(n)(n-2) / 2+3 & \text { if } q \text { is odd. }\end{cases}$
(ii) $\quad r=1: r n^{*}\left(C_{n}\right)=\phi(n)(n-1) / 2$.
(iii) $\quad r=2: r n^{*}\left(C_{n}\right)=\phi(n)(n-2) / 2+2$.
(iv) $r=3: r n^{*}\left(C_{n}\right)= \begin{cases}\phi(n)(n-1) / 2 & \text { if } q \neq 2 \text { is not a multiple of } 3, \\ \phi(n)(n-1) / 2+1 & \text { otherwise. }\end{cases}$

Throughout this work we will assume $n \geq 3$ and $k \geq d$. In Sec. 2 we provide general lower bounds for $r n_{k}\left(C_{n}\right)$ which complement the lower bounds provided by Saha and Panigrahi 15 to include the case $k>d$. We begin Sec. 3 by presenting necessary and sufficient conditions for a labeling to be a radio $k$-labeling of $C_{n}$ when $k \geq d$. In particular, these conditions simplify similar ones presented by Liu and Zhu [13] in the context of radio labelings. We use this characterization for $k=d+1$ to exhibit near-radio labelings that will achieve the lower bounds for $r n^{*}\left(C_{n}\right)$ found in Sec. 2, concluding the proof of Theorem 1.1. We offer some closing remarks in Sec. 4

## 2. Lower Bounds for $r n_{k}\left(C_{n}\right)$

In this section, we first derive general lower bounds for $r n_{k}\left(C_{n}\right)$ by defining a useful function on $k$ and $n$ and by manipulating inequalities due to the definition of radio $k$-labelings. We then increase these bounds by one for certain combinations of values of $k$ and $n$. As an application for this general methodology, we use these bounds for $k=d+1$ to establish lower bounds for $r n^{*}\left(C_{n}\right)$ which we later show to be exact values in Sec. 3 ,

Given a radio $k$-labeling $f$ of $C_{n}$, observe that the vertex labels must all be different since we are assuming $k \geq d$. We will use the following conventions through this section:

- $x_{0}, x_{1}, \ldots, x_{n-1}$ is the ordering of vertices of $C_{n}$ where $f\left(x_{i}\right)<f\left(x_{i+1}\right)$ for $i=$ $0,1, \ldots, n-2$; we will assume without loss of generality that $x_{0}=v_{0}$ (otherwise rotate the labels $v_{0}, v_{1}, \ldots, v_{n-1}$ around the cycle) and $f\left(x_{0}\right)=0$;
- $\pi$ is the permutation so that $x_{i}=v_{\pi(i)}$ for $i=0,1, \ldots, n-1$;
- $f_{i}=f\left(x_{i+1}\right)-f\left(x_{i}\right)$ and $d_{i}=\mathrm{d}\left(x_{i}, x_{i+1}\right)$ for $i=0,1, \ldots, n-2$.

Note that $f_{i} \geq k-d_{i}+1$ for $i=0,1, \ldots, n-2$ and the span of $f$ is $f\left(x_{n-1}\right)-f\left(x_{0}\right)=$ $f_{0}+f_{1}+\cdots+f_{n-2}$. We illustrate these concepts in Table 2 for the near-radio labeling of $C_{11}$ given in Fig. [1.

Define $\Phi(k, n)=\lceil(3 k-n+3) / 2\rceil$ (observe that $k \geq d$ implies that $3 k-n+3>0)$. Note that this is a generalization of $\phi(n)$ defined just before Theorem 1.1, in the

Table 2. Near-radio labeling of $C_{11}$ given in Fig[1

| $i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | ---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $f\left(x_{i}\right)$ | 0 | 2 | 5 | 7 | 10 | 12 | 16 | 18 | 21 | 24 | 26 |
| $f_{i}$ | 2 | 3 | 2 | 3 | 2 | 4 | 2 | 3 | 3 | 2 | - |
| $\pi(i)$ | 0 | 5 | 9 | 3 | 7 | 1 | 4 | 10 | 6 | 2 | 8 |
| $d_{i}$ | 5 | 4 | 5 | 4 | 5 | 3 | 5 | 4 | 4 | 5 | - |

sense that $\Phi(k, n)=\phi(n)$ when $k=d+1$. The first half of Lemma 2.1 presents a relationship between $\Phi(k, n)$ and the sequence $f_{0}, f_{1}, \ldots, f_{n-2}$ that will be useful in providing general lower bounds for $r n_{k}\left(C_{n}\right)$. Liu and Zhu [13] showed a similar result in the context of radio labelings, that is, for $k=d$. Our version extends their result to all $k \geq d$ with a slightly simpler proof. The second half of Lemma 2.1 includes an identity related to the sequence $d_{0}, d_{1}, \ldots, d_{n-2}$ that will allow us to improve the lower bounds mentioned earlier for select values of $k$ and $n$.

Lemma 2.1. Let $f$ be a radio $k$-labeling of $C_{n}$. For $i=0,1, \ldots, n-3$, we have $f_{i}+f_{i+1} \geq \Phi(k, n)$. In particular, if $f_{i}+f_{i+1}=\Phi(k, n)$ for an arbitrary $i$, then $d_{i}+d_{i+1}=2 k-\Phi(k, n)+2$ when $k$ and $n$ have different parities.

Proof. From the definition of radio $k$-labelings, the following three inequalities hold

$$
\begin{aligned}
f_{i} & =f\left(x_{i+1}\right)-f\left(x_{i}\right) \geq k-d_{i}+1 \\
f_{i+1} & =f\left(x_{i+2}\right)-f\left(x_{i+1}\right) \geq k-d_{i+1}+1 \\
f_{i}+f_{i+1} & =f\left(x_{i+2}\right)-f\left(x_{i}\right) \geq k-\mathrm{d}\left(x_{i}, x_{i+2}\right)+1
\end{aligned}
$$

Adding these inequalities, we obtain

$$
\begin{equation*}
2\left(f_{i}+f_{i+1}\right) \geq 3 k-\left[d_{i}+d_{i+1}+\mathrm{d}\left(x_{i}, x_{i+2}\right)\right]+3 \tag{2.1}
\end{equation*}
$$

Consider the path $P$ starting and ending at vertex $x_{i}$ and following the vertices on the cycle in the direction which ensures that vertex $x_{i+1}$ will precede $x_{i+2}$. Let $\ell_{1}, \ell_{2}$ and $\ell_{3}$ be the lengths of the sections of $P$ from $x_{i}$ to $x_{i+1}$, from $x_{i+1}$ to $x_{i+2}$, and from $x_{i+2}$ to $x_{i}$, respectively. Because

$$
\begin{equation*}
n=\ell_{1}+\ell_{2}+\ell_{3} \geq d_{i}+d_{i+1}+\mathrm{d}\left(x_{i}, x_{i+2}\right) \tag{2.2}
\end{equation*}
$$

our earlier inequality (2.1) implies $2\left(f_{i}+f_{i+1}\right) \geq 3 k-n+3$, or $f_{i}+f_{i+1} \geq\lceil(3 k-$ $n+3) / 2\rceil=\Phi(k, n)$ as desired.

Suppose $f_{i}+f_{i+1}=\Phi(k, n)$ for an arbitrary $i=0,1, \ldots, n-3$. Adding the two inequalities $d_{i} \geq k-f_{i}+1$ and $d_{i+1} \geq k-f_{i+1}+1$, we obtain $d_{i}+d_{i+1} \geq$ $2 k-\left(f_{i}+f_{i+1}\right)+2=2 k-\Phi(k, n)+2$. To verify the reverse inequality for the desired values of $k$ and $n$, note that $f_{i}+f_{i+1}=\Phi(k, n)$ implies that $f\left(x_{i+2}\right)-f\left(x_{i}\right)=$ $\Phi(k, n) \geq k-\mathrm{d}\left(x_{i}, x_{i+2}\right)+1$ and therefore $\mathrm{d}\left(x_{i}, x_{i+2}\right) \geq k-\Phi(k, n)+1$. Using the
inequality from (2.2), we obtain

$$
n \geq d_{i}+d_{i+1}+\mathrm{d}\left(x_{i}, x_{i+2}\right) \geq d_{i}+d_{i+1}+k-\Phi(k, n)+1,
$$

which implies $n-k+\Phi(k, n)-1 \geq d_{i}+d_{i+1}$. Observe that if $k$ and $n$ have different parities, then $3 k-n+3$ is even, thus $\Phi(k, n)=(3 k-n+3) / 2$ which then gives

$$
\begin{aligned}
2 k-\Phi(k, n)+2 & =2 k-2 \Phi(k, n)+\Phi(k, n)+2 \\
& =2 k-(3 k-n+3)+\Phi(k, n)+2 \\
& =n-k+\Phi(k, n)-1 .
\end{aligned}
$$

Therefore, $d_{i}+d_{i+1}=2 k-\Phi(k, n)+2$ as desired.
As a corollary of Lemma 2.1, we find general lower bounds for $r n_{k}\left(C_{n}\right)$.

## Corollary 2.2.

$$
r n_{k}\left(C_{n}\right) \geq \begin{cases}\Phi(k, n)(n-2) / 2+k-d+1 & \text { if } n \text { even } \\ \Phi(k, n)(n-1) / 2 & \text { if } n \text { odd } .\end{cases}
$$

Proof. Let $f$ be a radio $k$-labeling of $C_{n}$ with span exactly $r n_{k}\left(C_{n}\right)$. If $n$ is even, then by Lemma 2.1 we have

$$
\begin{aligned}
r n_{k}\left(C_{n}\right) & =\left(f_{0}+f_{1}\right)+\left(f_{2}+f_{3}\right)+\cdots+\left(f_{n-4}+f_{n-3}\right)+f_{n-2} \\
& \geq \Phi(k, n)(n-2) / 2+f_{n-2} .
\end{aligned}
$$

Therefore, the desired inequality follows since

$$
f_{n-2}=f\left(x_{n-1}\right)-f\left(x_{n-2}\right) \geq k-d_{n-2}+1 \geq k-d+1 .
$$

On the other hand, if $n$ is odd, then again by Lemma 2.1 we have

$$
r n_{k}\left(C_{n}\right)=\left(f_{0}+f_{1}\right)+\left(f_{2}+f_{3}\right)+\cdots+\left(f_{n-3}+f_{n-2}\right) \geq \Phi(k, n)(n-1) / 2
$$

Observe that if the two inequalities in the previous corollary are tight, it is straightforward to verify that: $f_{2 j}+f_{2 j+1}=\Phi(k, n)$ for $j=0,1, \ldots, L(n-$ 4) $/ 2\rfloor ; f_{n-2}=k-d+1$ if $n$ is even; and $f_{n-3}+f_{n-2}=\Phi(k, n)$ if $n$ is odd.

The lower bounds given in Corollary 2.2 when $k=d$ are the exact values for the radio number of cycles found by Liu and Zhu [13]. However, for other select values of $k$ and $n$ these lower bounds can be raised by 1 as shown in Propositions 2.5 and [2.6] Before presenting these results, we provide the following auxiliary lemma.

Lemma 2.3. If $n$ is even and $f$ is a radio $k$-labeling with span $\Phi(k, n)(n-2) / 2+$ $k-d+1$, then for $i=0,1, \ldots, n-2$ we have
(i) $f_{i}=k-d+1$ if $i$ even, and $f_{i}=\Phi(k, n)-(k-d+1)$ if $i$ odd;
(ii) $d_{i}=d$ if $i$ even, and $d_{i}=2 k-\Phi(k, n)-d+2$ if $i$ and $k$ are odd.

Proof. Let us first verify item (i). From Lemma 2.1] $f_{n-3}+f_{n-2} \geq \Phi(k, n)$. But from the observation made right after Corollary 2.2 $f_{n-2}=k-d+1$, therefore $f_{n-3} \geq \Phi(k, n)-(k-d+1)$. In addition, $f_{n-4}+f_{n-3}=\Phi(k, n)$ with $f_{n-4} \geq k-d+1$, hence $f_{n-3}=\Phi(k, n)-(k-d+1)$ and $f_{n-4}=k-d+1$. Replacing $n$ with $n-2, n-4, \ldots, 6,4$ and repeating this process yields the remaining desired values of $f_{i}$.

To verify item (ii), let $i$ be an arbitrary even number with $0 \leq i \leq n-2$. From the definition of radio $k$-labelings, $d_{i} \geq k-f_{i}+1=d$ where the last equality follows because $f_{i}=k-d+1$ from item (i). Therefore $d_{i}=d$. If $i \leq n-3$, $f_{i}+f_{i+1}=\Phi(k, n)$ from item (i) and since $k$ and $n$ have different parities, Lemma 2.1 implies $d_{i}+d_{i+1}=2 k-\Phi(k, n)+2$ and hence $d_{i+1}=2 k-\Phi(k, n)-d_{i}+2=$ $2 k-\Phi(k, n)-d+2$.

For the remainder of this work, an arithmetic expression involving integers immediately followed by " $(\bmod n)$ " indicates that its final value should be taken modulo $n$, unless the congruence operator " $\equiv$ " precedes the expression, in which case the standard modular arithmetic conventions apply.

Lemma 2.4. If $k$ and $n$ have different parities and $f$ is a radio $k$-labeling of $C_{n}$ with span exactly equal to the corresponding lower bound presented in Corollary [2.2, then $\pi(i+1)=\pi(i)+d_{i}(\bmod n)$ for all $i=0,1, \ldots, n-2$, or $\pi(i+1)=\pi(i)-d_{i}(\bmod n)$ for all $i=0,1, \ldots, n-2$ (recall $\pi$ is the permutation so that $x_{i}=v_{\pi(i)}$ for $i=$ $0,1, \ldots, n-1$ and $\left.x_{0}=v_{0}\right)$.

Proof. First observe that $d_{i}=\mathrm{d}\left(x_{i}, x_{i+1}\right)=\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+1)}\right)$ which implies $\pi(i+$ $1)=\pi(i)+d_{i}(\bmod n)$ or $\pi(i+1)=\pi(i)-d_{i}(\bmod n)$ for each $i=0,1, \ldots, n-2$.

Suppose $n$ is even and $k$ is odd. Note that if $i$ is even, then Lemma 2.3 implies that $d_{i}=d$ and so, because $n=2 d$, we have $\pi(i)-d_{i} \equiv \pi(i)+d_{i}(\bmod n)$. If there exists an odd $j$ where $0<j<n-4$ so that $\pi(j+1)=\pi(j)+c d_{j}(\bmod n)$ and $\pi(j+3)=\pi(j+2)-c d_{j+2}(\bmod n)$ where $c= \pm 1$, then $d_{j-1}=d_{j+1}=d$ and $d_{j}=d_{j+2}=2 k-\Phi(k, n)-d+2$ from Lemma 2.3 hence

$$
\begin{aligned}
\pi(j+3) & =\pi(j-1)+d_{j-1}+c d_{j}+d_{j+1}-c d_{j+2}(\bmod n) \\
& =\pi(j-1)+2 d(\bmod n)=\pi(j-1),
\end{aligned}
$$

which is impossible as $\pi$ is a permutation. Therefore, such $j$ does not exist and the proposition follows.

Now, suppose $n$ is odd and $k$ is even. We will initially show that for $i$ even and $0 \leq i \leq n-3$, if $\pi(i+1)=\pi(i)+d_{i}(\bmod n)$, then $\pi(i+2)=\pi(i+1)+$ $d_{i+1}(\bmod n)$. Suppose by contradiction that $\pi(i+2)=\pi(i+1)-d_{i+1}(\bmod n)$. From the observation made right after Corollary 2.2 we have that $f_{i}+f_{i+1}=\Phi(k, n)$ so from Lemma 2.1 we obtain $d_{i}+d_{i+1}=2 k-\Phi(k, n)+2=(k+n+1) / 2$. We may
assume without loss of generality that $d_{i+1} \geq d_{i}$ (otherwise switch the roles of $d_{i}$ and $d_{i+1}$ in the discussion below, excluding the identities involving $\pi$ ). If $d_{i} \leq k / 2$, then $d_{i+1}=(k+n+1) / 2-d_{i} \geq(n+1) / 2>(n-1) / 2=d$, which is impossible. If on the other hand $d_{i}>k / 2$, then

$$
\mathrm{d}\left(x_{i}, x_{i+2}\right)=\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+2)}\right) \leq d_{i+1}-d_{i}<d_{i+1}-k / 2 \leq d-k / 2
$$

(The first inequality follows because $\pi(i+2)=\pi(i)+d_{i}-d_{i+1}(\bmod n)$ and $d_{i+1} \geq d_{i}$.) But this implies

$$
k-\mathrm{d}\left(x_{i}, x_{i+2}\right)+1>k-(d-k / 2)+1=\Phi(k, n)=f_{i}+f_{i+1}=f\left(x_{i+2}\right)-f\left(x_{i}\right),
$$

which contradicts the fact that $f$ is a radio $k$-labeling, so we must have $\pi(i+2)=$ $\pi(i+1)+d_{i+1}(\bmod n)$. Similarly, we can also show that for $i$ even and $0 \leq i \leq n-3$, if $\pi(i+1)=\pi(i)-d_{i}(\bmod n)$, then $\pi(i+2)=\pi(i+1)-d_{i+1}(\bmod n)$. If there exists an even $j$ where $0 \leq j<n-4$ so that

$$
\begin{aligned}
& \pi(j+1)=\pi(j)+c d_{j}(\bmod n), \\
& \pi(j+3)=\pi(j+2)-c d_{j+2}(\bmod n)
\end{aligned}
$$

where $c= \pm 1$, then

$$
\begin{aligned}
& \pi(j+2)=\pi(j+1)+c d_{j+1}(\bmod n), \\
& \pi(j+4)=\pi(j+3)-c d_{j+3}(\bmod n)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\pi(j+4) & =\pi(j)+\left(d_{j}+d_{j+1}\right)-\left(d_{j+2}+d_{j+3}\right)(\bmod n) \\
& =\pi(j)+(k+n+1) / 2-(k+n+1) / 2(\bmod n)=\pi(j)
\end{aligned}
$$

which is impossible as $\pi$ is a permutation. Therefore, such $j$ does not exist, and the proposition follows.

Proposition 2.5. If $k$ and $n$ have different parities and $\operatorname{gcd}(n, 2 k-\Phi(k, n)+2)>2$, then

$$
r n_{k}\left(C_{n}\right) \geq \begin{cases}\Phi(k, n)(n-2) / 2+k-d+2 & \text { if } n \text { even } \\ \Phi(k, n)(n-1) / 2+1 & \text { if } n \text { odd }\end{cases}
$$

Proof. We will argue by contradiction that there exists a radio $k$-labeling $f$ with span exactly equal to the corresponding lower bound in Corollary 2.2 By Lemma 2.1 and the observation following Corollary[2.2, we have $d_{2 j}+d_{2 j+1}=2 k-\Phi(k, n)+2$ for $j=0,1, \ldots,\lfloor(n-4) / 2\rfloor$, and, if $n$ odd, $d_{n-3}+d_{n-2}=2 k-\Phi(k, n)+2$. We may assume without loss of generality that $\pi(1)=\pi(0)+d_{0}(\bmod n)$ (otherwise reverse the order of vertices on the cycle). From Lemma 2.4, $\pi(i+1)=\pi(i)+d_{i}(\bmod n)$ for all $i=0,1, \ldots, n-1$. Let $\operatorname{gcd}(n, 2 k-\Phi(k, n)+2)=t>2$ and choose $\ell=n / t-1$.

Observe that $2 \leq 2 \ell+2 \leq n-1$ (the second inequality is true since $n \geq 3$ and $t>2$ ) and

$$
\begin{aligned}
\pi(2 \ell+2) & =\pi(0)+\left(d_{0}+d_{1}\right)+\left(d_{2}+d_{3}\right)+\cdots+\left(d_{2 \ell}+d_{2 \ell+1}\right)(\bmod n) \\
& =\pi(0)+(\ell+1)(2 k-\Phi(k, n)+2)(\bmod n) \\
& =\pi(0)+n(2 k-\Phi(k, n)+2) / t(\bmod n)=\pi(0),
\end{aligned}
$$

which is impossible as $\pi$ is a permutation. Therefore, the proposition must hold.

The first lower bound in Proposition 2.5 also holds for some other combinations of odd $k$ and even $n$ without having the gcd requirement satisfied, as shown in Proposition 2.6

Proposition 2.6. If $n=4 q$ where $q$ is a positive integer and and $k \equiv 3(\bmod 4)$, then

$$
r n_{k}\left(C_{n}\right) \geq \Phi(k, n)(n-2) / 2+k-d+2 .
$$

Proof. Suppose by contradiction that $r n_{k}\left(C_{n}\right)<\Phi(k, n)(n-2) / 2+k-d+2$. By Corollary 2.2, there exists a radio $k$-labeling $f$ with span $\Phi(k, n)(n-2) / 2+k-d+1$. Since $n$ is even and $k$ is odd, Lemma 2.3 implies that for $i=0,1, \ldots, n-2: d_{i}=$ $d=2 q$ if $i$ is even; and $d_{i}=2 k-\Phi(k, n)-d+2=(k+1) / 2$ if $i$ is odd.

We may assume without loss of generality that $\pi(1)=\pi(0)+d_{0}(\bmod n)($ otherwise, reverse the order of vertices on the cycle). From Lemma 2.4, $\pi(i+1)=\pi(i)+$ $d_{i}(\bmod n)$ for all $i=0,1, \ldots, n-2$. Therefore, $\pi(i)$ is even for $i=0,1, \ldots, n-1$ because $n$ and all $d_{i}$ are even (note that $k \equiv 3(\bmod 4)$ implies that $(k+1) / 2$ is even). But this contradicts the fact that $\pi$ is a permutation of $0,1, \ldots, n-1$.

We use Corollary 2.2 Propositions 2.5 and 2.6 to provide the lower bounds of $r n^{*}\left(C_{n}\right)$ in Corollary 2.7

Corollary 2.7. Let $n=4 q+r$ where $q$ and $r$ are integers with $q \geq 0$ and $0 \leq r \leq 3$. Then the following hold
(i) $r=0: r n^{*}\left(C_{n}\right) \geq \begin{cases}\phi(n)(n-2) / 2+2 & \text { if } q \text { is even, } \\ \phi(n)(n-2) / 2+3 & \text { if } q \text { is odd. }\end{cases}$
(ii) $\quad r=1: r n^{*}\left(C_{n}\right) \geq \phi(n)(n-1) / 2$.
(iii) $\quad r=2: r n^{*}\left(C_{n}\right) \geq \phi(n)(n-2) / 2+2$.
(iv) $r=3: r n^{*}\left(C_{n}\right) \geq \begin{cases}\phi(n)(n-1) / 2 & \text { if } q \text { is not a multiple of } 3, \\ \phi(n)(n-1) / 2+1 & \text { otherwise. }\end{cases}$

Proof. In the particular case of near-radio labelings, that is $k=d+1$, we have $\Phi(k, n)=\phi(n)$ and $r n_{k}\left(C_{n}\right)=r n^{*}\left(C_{n}\right)$ as defined in Sec. [1.

In (i) and (iii), $n$ is even, so Corollary 2.2 provides the lower bound $\Phi(k, n)(n-$ 2) $/ 2+k-d+1=\phi(n)(n-2) / 2+2$ for $r n^{*}\left(C_{n}\right)$. We can add 1 to this bound in (i) when $q$ is odd, since in this case $k \equiv 3(\bmod 4)$ and Proposition 2.6 confirms this larger bound.

In (ii) and (iv), $n$ is odd, so Corollary 2.2 provides the lower bound $\Phi(k, n)(n-$ $1) / 2=\phi(n)(n-1) / 2$. We can add 1 to this bound in (iv) when $q$ is a multiple of 3 , since in this case $\operatorname{gcd}(n, 2 k-\Phi(k, n)+2)=\operatorname{gcd}(4 q+3,3 q+3) \geq 3$ and Proposition 2.5 confirms this larger bound.

## 3. Exact Values for $r n^{*}\left(C_{n}\right)$

In this section, we will completely characterize $r n^{*}\left(C_{n}\right)$ for all $n \geq 3$ by exhibiting near-radio labelings of $C_{n}$ with spans that meet the lower bounds of Corollary 2.7, thus concluding the proof of Theorem 1.1. We address the cases where $n=4 q+r$ for $q$ a positive integer and $r=0,1,2$ in Propositions 3.2 3.4, respectively. Note that Fig. 1 shows near-radio labelings with span exactly $r n^{*}\left(C_{n}\right)$ where $n=4 q+$ 3 for $q=0,2$, which were verified exhaustively by a computer program. These instances are not included in the results that follow so they were provided separately. The remaining cases where $n=4 q+3$ for integers $q \geq 3$ are more complex and are presented in stages in Propositions 3.6-3.8. The following auxiliary result is instrumental in generating general radio $k$-labelings of $C_{n}$.

Lemma 3.1. Let $f_{0}, f_{1}, \ldots, f_{n-2}$ be a sequence of positive integers and let $\pi$ be a permutation of $\{0,1, \ldots, n-1\}$ where $\pi(0)=0$. Define $x_{i}=v_{\pi(i)}$ for $i=0,1, \ldots, n-$ 1 , and consider the function $f$ such that $f\left(x_{0}\right)=0$ and $f\left(x_{i+1}\right)=f\left(x_{i}\right)+f_{i}$ for $i=0,1, \ldots, n-2$. Therefore, $f$ is a radio $k$-labeling of $C_{n}$ if and only if the two items below are satisfied
(i) $f_{i} \geq k-\mathrm{d}\left(x_{i}, x_{i+1}\right)+1$;
(ii) $f_{i}+f_{i+1} \geq k-\mathrm{d}\left(x_{i}, x_{i+2}\right)+1$.

Proof. If $f$ is a radio $k$-labeling of $C_{n}$, then (i) and (ii) follow from the definition because $f_{i}=f\left(x_{i+1}\right)-f\left(x_{i}\right)$ and $f_{i}+f_{i+1}=f\left(x_{i+2}\right)-f\left(x_{i}\right)$.

Suppose on the other hand that (i) and (ii) hold. To prove that $f$ is a radio $k$ labeling of $C_{n}$, it is enough to show that if $0 \leq i<j \leq n-1$, then $f\left(x_{j}\right)-f\left(x_{i}\right)=$ $f_{i}+f_{i+1}+\cdots+f_{j-1} \geq k-\mathrm{d}\left(x_{i}, x_{j}\right)+1$. If $j=i+1$ or $i+2$, then this last inequality is exactly (i) or (ii), respectively. The two cases below complete the proof.

Case 1: $j=i+3$. For $i, i+1$, and $i+2$, the following three inequalities follow from (i):

$$
\begin{aligned}
f_{i} & \geq k-\mathrm{d}\left(x_{i}, x_{i+1}\right)+1 \\
f_{i+1} & \geq k-\mathrm{d}\left(x_{i+1}, x_{i+2}\right)+1 \\
f_{i+2} & \geq k-\mathrm{d}\left(x_{i+2}, x_{i+3}\right)+1
\end{aligned}
$$

Adding these inequalities, we obtain

$$
\begin{align*}
f_{i}+f_{i+1}+f_{i+2} & \geq 3 k-\left[\mathrm{d}\left(x_{i}, x_{i+1}\right)+\mathrm{d}\left(x_{i+1}, x_{i+2}\right)+\mathrm{d}\left(x_{i+2}, x_{i+3}\right)\right]+3 \\
& \geq 3 k-\left[n-\mathrm{d}\left(x_{i}, x_{i+2}\right)+\mathrm{d}\left(x_{i+2}, x_{i+3}\right)\right]+3  \tag{a}\\
& \geq 3 k-\left[n+\mathrm{d}\left(x_{i}, x_{i+3}\right)\right]+3  \tag{b}\\
& \geq 3 k-2 d-\mathrm{d}\left(x_{i}, x_{i+3}\right)+2  \tag{c}\\
& \geq k-\mathrm{d}\left(x_{i}, x_{i+3}\right)+1 \tag{d}
\end{align*}
$$

For each of the respective lower bounds in steps (a) through (d), we used the following facts:
(a) from the proof of Lemma 2.1, we have $n \geq \mathrm{d}\left(x_{i}, x_{i+1}\right)+\mathrm{d}\left(x_{i+1}, x_{i+2}\right)+$ $\mathrm{d}\left(x_{i}, x_{i+2}\right)$, or equivalently, $n-\mathrm{d}\left(x_{i}, x_{i+2}\right) \geq \mathrm{d}\left(x_{i}, x_{i+1}\right)+\mathrm{d}\left(x_{i+1}, x_{i+2}\right)$;
(b) from the triangle inequality, we have $\mathrm{d}\left(x_{i+2}, x_{i+3}\right) \leq \mathrm{d}\left(x_{i}, x_{i+2}\right)+\mathrm{d}\left(x_{i}, x_{i+3}\right)$, or equivalently, $\mathrm{d}\left(x_{i}, x_{i+3}\right) \geq-\mathrm{d}\left(x_{i}, x_{i+2}\right)+\mathrm{d}\left(x_{i+2}, x_{i+3}\right)$;
(c) $2 d+1 \geq n$;
(d) $k \geq d$.

Case 2: $j \geq i+4$. As (i) and (ii) hold, the same arguments used in the proof of Lemma 2.1 can be applied here to show that $f_{i}+f_{i+1} \geq \Phi(k, n)$ and $f_{i+2}+f_{i+3} \geq$ $\Phi(k, n)$, and hence

$$
\begin{aligned}
f_{i}+f_{i+1}+\cdots+f_{j-1} & \geq f_{i}+f_{i+1}+f_{i+2}+f_{i+3} \\
& \geq 2 \Phi(k, n) \\
& =2\lceil(3 k-n+3) / 2\rceil \\
& \geq 3 k-n+3 \\
& \geq k-\mathrm{d}\left(x_{i}, x_{j}\right)+1 .
\end{aligned}
$$

Note that the last inequality can be verified as in Case 1 because of the facts given in (C) and (d), and because $\mathrm{d}\left(x_{i}, x_{j}\right) \geq 1$.

Note that for the case $k=d$, two additional conditions, other than (i) and (ii) in Lemma 3.1, were mentioned in Liu and Zhu [13, namely: $f_{i}+f_{i+1}+f_{i+2} \geq$ $d-\mathrm{d}\left(x_{i}, x_{i+3}\right)+1$ and $f_{i}+f_{i+1}+f_{i+2}+f_{i+3} \geq d$. However, these are not necessary to conclude that $f$ is a radio labeling of $C_{n}$ as verified in Lemma 3.1

To prove each of the propositions mentioned in the first paragraph of this section, we will first exhibit two sequences of positive integers $d_{0}, d_{1}, \ldots, d_{n-2}$ and $f_{0}, f_{1}, \ldots, f_{n-2}$. Based on these sequences, the associated functions $\pi$ and $f$ are defined as follows (these conventions will be used from this point forward):

- $\pi(0)=0$ and $\pi(i+1)=\pi(i)+d_{i}(\bmod n)$ for $i=0,1, \ldots, n-2$;
- $x_{i}=v_{\pi(i)}$ for $i=0,1, \ldots, n-1$;
- $f\left(x_{0}\right)=0$ and $f\left(x_{i+1}\right)=f\left(x_{i}\right)+f_{i}$ for $i=0,1, \ldots, n-2$.

The proof proceeds with the verification that the associated function $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$ so the vertices $x_{0}, x_{1}, \ldots, x_{n-1}$ are exactly the
vertices of $C_{n}$. To finish the proof, we verify that the associated function $f$ satisfies items (i) and (ii) of Lemma 3.1 when $k=d+1$, which implies that $f$ is a near-radio labeling of $C_{n}$ with span $f\left(x_{n-1}\right)$. This span turns out to match the lower bound of $r n^{*}\left(C_{n}\right)$ in the respective item of Corollary 2.7 and therefore it is exact.

Proposition 3.2. If $n=4 q$ where $q$ is a positive integer, then

$$
r n^{*}\left(C_{n}\right)= \begin{cases}\phi(n)(n-2) / 2+2 & \text { if } q \text { is even } \\ \phi(n)(n-2) / 2+3 & \text { if } q \text { is odd }\end{cases}
$$

Proof. For $i=0,1, \ldots, n-2$, let

$$
d_{i}= \begin{cases}2 q & \text { if } i \text { even } \\ q & \text { if } i=2 q-1 \text { and } q \text { odd } \\ q+1 & \text { otherwise }\end{cases}
$$

Observe that the associated function $\pi$ is equivalent to

$$
\begin{aligned}
\pi(2 j) & =j(3 q+1)(\bmod n) \\
\pi(2 j+1) & =j(3 q+1)+2 q(\bmod n)
\end{aligned}
$$

for $j=0,1, \ldots, q-1$, and

$$
\begin{aligned}
\pi(2 j) & =j(3 q+1)-(q \bmod 2)(\bmod n) \\
\pi(2 j+1) & =j(3 q+1)+2 q-(q \bmod 2)(\bmod n)
\end{aligned}
$$

for $j=q, q+1, \ldots, 2 q-1$. Note that when $q$ is odd, $\pi(i)$ is even for $i=0,1, \ldots, 2 q-1$, and $\pi(i)$ is odd for $i=2 q, 2 q+1, \ldots, n-1$.

We first show that $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$. Suppose for contradiction that this is not the case. Let $j$ and $j^{\prime}$ be non-negative integers smaller than $2 q$. Because $(3 q+1) \equiv-(q-1)(\bmod n)$, we have $\left(j-j^{\prime}\right)(3 q+1) \equiv\left(j^{\prime}-j\right)(q-1)(\bmod n)$. Without loss of generality, let $j^{\prime}>j$. We have to examine two cases:

Case 1: Suppose $\pi(2 j)=\pi\left(2 j^{\prime}\right)$ or $\pi(2 j+1)=\pi\left(2 j^{\prime}+1\right)$. From the note on the parities of values of $\pi(i)$, either $0 \leq j<j^{\prime}<q$ or $q \leq j<j^{\prime}<2 q$. Then $\left(j^{\prime}-j\right)(q-1) \equiv 0(\bmod n)$. If $q$ is even, then $\operatorname{gcd}(n, q-1)=\operatorname{gcd}(q, q-1)=1$, so $\left(j^{\prime}-j\right) \equiv 0(\bmod n)$. But $0<j^{\prime}-j \leq 2 q-1<n$, so this is impossible. If $q$ is odd, then $\operatorname{gcd}(n, q-1)=2$ or 4 . Then $\operatorname{gcd}\left(n / 2^{t},(q-1) / 2^{t}\right)=1$ for some $t=1,2$. Then we have $\left(j^{\prime}-j\right)(q-1) / 2^{t} \equiv 0\left(\bmod n / 2^{t}\right)$, so $\left(j^{\prime}-j\right) \equiv 0\left(\bmod n / 2^{t}\right)$. But recall that when $q$ is odd, $\pi(i)$ is even for $i=0,1, \ldots, 2 q-1$ and $\pi(i)$ is odd for $i=2 q, 2 q+1, \ldots, n-1$, so $0 \leq j<j^{\prime} \leq q-1$ or $q \leq j<j^{\prime} \leq 2 q-1$. Hence $0<j^{\prime}-j \leq q-1<n / 4 \leq n / 2^{t}$ which contradicts $\left(j^{\prime}-j\right) \equiv 0\left(\bmod n / 2^{t}\right)$.

Case 2: Suppose $\pi(2 j)=\pi\left(2 j^{\prime}+1\right)$. Then $\left(j-j^{\prime}\right)(3 q+1)+2 q \equiv 0(\bmod n)$, or equivalently $\left(j^{\prime}-j\right)(q-1)+2 q \equiv 0(\bmod n)$. We can rewrite this as $\left(j^{\prime}-j\right)(q-$ 1) $+2 q=4 q x$ for some integer $x$. Then $\left(j^{\prime}-j\right)(q-1)=2 q(2 q x-1)$, which yields $\left(j^{\prime}-j\right)(q-1) \equiv 0(\bmod 2 q)$. If $q$ is even, then $\operatorname{gcd}(2 q, q-1)=\operatorname{gcd}(q, q-1)=1$,
so $\left(j^{\prime}-j\right) \equiv 0(\bmod 2 q)$ which is impossible because $0<j^{\prime}-j \leq 2 q-1<2 q$. If $q$ is odd, then $\left(j^{\prime}-j\right)(q-1) / 2 \equiv 0(\bmod q)$. But $\operatorname{gcd}(q,(q-1) / 2)=1$, so $\left(j^{\prime}-j\right) \equiv 0(\bmod q)$ which is impossible because $0<j^{\prime}-j<q$ (as shown at the end of Case 1).

Because we reached a contradiction in both cases, we finally conclude that $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$. For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$, or more specifically

$$
f_{i}= \begin{cases}2 & \text { if } i \text { even } \\ q+2 & \text { if } i=2 q-1 \text { and } q \text { odd } \\ q+1 & \text { otherwise }\end{cases}
$$

We have for all $i$ that $\mathrm{d}\left(x_{i}, x_{i+1}\right)=\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+1)}\right)=\min \left\{d_{i}, n-d_{i}\right\}=d_{i}$, therefore $f_{i}=d-\mathrm{d}\left(x_{i}, x_{i+1}\right)+2$ so item (i) in Lemma 3.1 is satisfied. By inspection, $d_{i}+d_{i+1}=$ $3 q$ or $3 q+1$, and $f_{i}+f_{i+1}=q+3$ or $q+4$. Since, $d<d_{i}+d_{i+1} \leq n$, we must have $\mathrm{d}\left(x_{i}, x_{i+2}\right)=n-\left(d_{i}+d_{i+1}\right)$. Then,

$$
\begin{aligned}
f_{i}+f_{i+1} \geq q+3 & =(3 q+1)-(2 q-2) \geq\left(d_{i}+d_{i+1}\right)-2 q+2 \\
& =2 q-\left[4 q-\left(d_{i}+d_{i+1}\right)\right]+2=d-\left[n-\left(d_{i}+d_{i+1}\right)\right]+2 \\
& =d-\mathrm{d}\left(x_{i}, x_{i+2}\right)+2
\end{aligned}
$$

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the associated function $f$ is a near-radio labeling of $C_{n}$. The span of $f$ is $f\left(x_{n-1}\right)=$ $\phi(n)(n-2) / 2+2$ if $q$ is even, and $f\left(x_{n-1}\right)=\phi(n)(n-2) / 2+3$ if $q$ is odd, so the desired result follows from item (i) of Corollary 2.7

The proofs of Propositions 3.3 and 3.4 use the same sequence of positive integers $d_{0}, d_{1}, \ldots, d_{n-2}$ and permutation $\pi$ used by Liu and Zhu [13] when computing the radio numbers of $C_{n}$ for $n=4 q+1$ and $n=4 q+2$, respectively. Therefore, we refer the reader to their work for details on the verifications that $\pi$ is indeed a permutation of $\{0,1, \ldots, n-1\}$.

Proposition 3.3. If $n=4 q+1$ where $q$ is a positive integer, then

$$
r n^{*}\left(C_{n}\right)=\phi(n)(n-1) / 2 .
$$

Proof. For $j=0,1, \ldots, q-1$, let $d_{4 j}=d_{4 j+2}=2 q-j$ and $d_{4 j+1}=d_{4 j+3}=q+1+j$. From Liu and Zhu [13], the associated function $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$.

For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$. It is straightforward to check that items (i) and (ii) from Lemma 3.1 hold (details are left to the reader) so the associated function $f$ is a near-radio labeling of $C_{n}$. The span of $f$ is $f\left(x_{n-1}\right)=\phi(n)(n-1) / 2$ and the desired result holds from item (ii) of Corollary 2.7.

Proposition 3.4. If $n=4 q+2$ where $q$ is a positive integer, then

$$
r n^{*}\left(C_{n}\right)=\phi(n)(n-2) / 2+2 .
$$

Proof. For $i=0,1, \ldots, n-2$, let $d_{i}=2 q+1$ if $i$ even and $d_{i}=q+1$ if $i$ odd. From Liu and Zhu [13], the associated function $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$.

For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$, or more specifically $f_{i}=2$ if $i$ even, and $f_{i}=q+2$ if $i$ odd. It is straightforward to check that items (i) and (ii) from Lemma 3.1 hold (details are left to the reader) so the associated function $f$ is a near-radio labeling of $C_{n}$. The span of $f$ is $f\left(x_{n-1}\right)=\phi(n)(n-2) / 2+2$ and the desired result follows from item (iii) of Corollary 2.7. Therefore, the lemma holds.

Before we proceed to the more complex case $n=4 q+3$ for $q \geq 3$, we need an auxiliary result.

Lemma 3.5. Let $a$ and $b$ be two positive integers such that $\operatorname{gcd}(a, b)=1$. The function $g$ defined as $g(0)=0$ and $g(i+1)=g(i)+a(\bmod b)$ for $i=0,1, \ldots, b-2$ is a permutation of $\{0,1, \ldots, b-1\}$.

Proof. Let us assume to the contrary that $g$ is not a permutation of $\{0,1, \ldots, b-1\}$. Hence there are integers $j$ and $j^{\prime}$ such that $0 \leq j<j^{\prime} \leq b-1$ so that $g(j)=g\left(j^{\prime}\right)$, or equivalently, $\left(j^{\prime}-j\right) a \equiv 0(\bmod b)$. Since $\operatorname{gcd}(a, b)=1$, we must have $\left(j^{\prime}-j\right) \equiv$ $0(\bmod b)$ which is impossible as $0<j^{\prime}-j<b$. Therefore, the desired result holds.

Proposition 3.6. If $n=4 q+3$ where $q$ is odd, $q \geq 1$, and $q$ is not a multiple of 3, then

$$
r n^{*}\left(C_{n}\right)=\phi(n)(n-1) / 2 .
$$

Proof. For $i=0,1, \ldots, n-2$, let $d_{i}=(3 q+3) / 2$. Note that $\operatorname{gcd}((3 q+3) / 2, n)$ divides $8(3 q+3) / 2-3 n=3$; since $\operatorname{gcd}((3 q+3) / 2, n)=3$ could only hold when $q$ is multiple of 3 , we must have $\operatorname{gcd}((3 q+3) / 2, n)=1$. Therefore, Lemma 3.5 (with $a=(3 q+3) / 2$ and $b=n)$ shows that $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$.

For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$ or more specifically $f_{i}=(q+3) / 2$. Observe that

$$
\begin{aligned}
\mathrm{d}\left(x_{i}, x_{i+1}\right) & =\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+1)}\right)=\min \left\{d_{i}, n-d_{i}\right\} \\
& =\min \{(3 q+3) / 2,(5 q+3) / 2\}=d_{i},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{d}\left(x_{i}, x_{i+2}\right) & =\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+2)}\right)=\min \left\{2 d_{i}, n-2 d_{i}\right\} \\
& =\min \{3 q+3, q\}=q .
\end{aligned}
$$

Therefore, $f_{i}=(q+3) / 2=d-\mathrm{d}\left(x_{i}, x_{i+1}\right)+2$ and $f_{i}+f_{i+1}=q+3=d-\mathrm{d}\left(x_{i}, x_{i+2}\right)+2$ so items (i) and (ii) in Lemma3.1 are satisfied, and we conclude that the associated
function $f$ is a near-radio labeling of $C_{n}$. The span of $f$ is $f\left(x_{n-1}\right)=\phi(n)(n-1) / 2$ so the desired result follows from item (iv) of Corollary 2.7.

Proposition 3.7. If $n=4 q+3$ where $q$ is even, $q \geq 4$, and $q$ is not a multiple of 3, then

$$
r n^{*}\left(C_{n}\right)=\phi(n)(n-1) / 2
$$

Proof. Define $\pi^{*}(0)=0$ and $\pi^{*}(i+1)=\pi^{*}(i)+3 q+3(\bmod n)$, for $i=0,1, \ldots, n-$ 2. Since $\operatorname{gcd}(3 q+3, n)=1$, we have from Lemma 3.5 (with $a=3 q+3$ and $b=n$ ) that $\pi^{*}$ is a permutation of $\{0,1, \ldots, n-1\}$. We will construct another permutation $\pi$ of $\{0,1, \ldots, n-1\}$ based on $\pi^{*}$ as follows (we are not abusing the notation here as we will later provide the sequence $d_{0}, d_{1}, \ldots, d_{n-2}$ so that $\pi$ is exactly the associated function). Set $s=(n-5) / 2$ and define

$$
\begin{aligned}
\pi(2 i) & =\pi^{*}(i) \text { for } i=0,1, \ldots, s \\
\pi(2 i+1) & =\pi^{*}(s+5+i) \text { for } i=0,1, \ldots, s-1 \\
\pi(n-4) & =\pi^{*}(s+3) \\
\pi(n-3) & =\pi^{*}(s+1) \\
\pi(n-2) & =\pi^{*}(s+4) \\
\pi(n-1) & =\pi^{*}(s+2)
\end{aligned}
$$

Informally, the permutation $\pi$ starts by sequentially alternating the first $s+1$ terms of $\pi^{*}$ with the last $s$ terms, in order, starting with $\pi^{*}(0)=0 ; \pi$ ends by conveniently arranging the remaining terms $\pi^{*}(s+j)$ for $j=1,2,3,4$, to satisfy the requirements of this proof.

For $j=0,1, \ldots,(n-7) / 2$, let $d_{2 j}=3 q / 2+3$ and $d_{2 j+1}=3 q / 2$. In addition, let $d_{n-2}=d_{n-4}=2 q$ and $d_{n-3}=d_{n-5}=q+3$. For $i=0,1, \ldots, s-1$, the straightforward computations below, where operations are taken modulo $n$, show that

$$
\begin{aligned}
\pi(2 i+1)-\pi(2 i) & =\pi^{*}(s+5+i)-\pi^{*}(i) \\
& =(s+5)(3 q+3)=n(3 q+3) / 2+3 q / 2+3 \\
& =3 q / 2+3=d_{2 i} \\
\pi(2 i+2)-\pi(2 i+1) & =\pi(2 i+2)-(\pi(2 i)+3 q / 2+3) \\
& =\pi^{*}(i+1)-\pi^{*}(i)-3 q / 2-3 \\
& =(3 q+3)-3 q / 2-3=3 q / 2=d_{2 i+1} .
\end{aligned}
$$

Furthermore, using similar computations as above to verify the few remaining cases, one can show that $\pi(i+1)=\pi(i)+d_{i}(\bmod n)$ for all $i=0,1, \ldots, n-1$, that is, $\pi$
is indeed the associated function (we leave the details to the reader for the sake of brevity).

For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$ or more specifically: $f_{2 j}=q / 2$, and $f_{2 j+1}=q / 2+3$ for $j=0,1, \ldots,(n-7) / 2 ;$ and $f_{n-2}=f_{n-4}=3$, and $f_{n-3}=$ $f_{n-5}=q$. Observe that $\mathrm{d}\left(x_{i}, x_{i+1}\right)=\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+1)}\right)=\min \left\{d_{i}, n-d_{i}\right\}=d_{i}$ (note that the last equality follows because $d_{i} \leq d$ when $\left.q \geq 4\right)$ so $f_{i}=d-\mathrm{d}\left(x_{i}, x_{i+1}\right)+2$ and item (i) in Lemma 3.1 is satisfied. By inspection,

$$
\begin{aligned}
\mathrm{d}\left(x_{i}, x_{i+2}\right) & =\mathrm{d}\left(v_{\pi(i)}, v_{\pi\left(i_{2}\right)}\right) \\
& = \begin{cases}\min \{3 q+3, n-(3 q+3)\}=q \\
\min \{5 q / 2+3, n-(5 q / 2+3)\}=3 q / 2 & \text { if } i=n-6,\end{cases}
\end{aligned}
$$

and

$$
f_{i}+f_{i+1}= \begin{cases}q+3 & \text { if } i \neq n-6 \\ 3 q / 2+3 & \text { if } i=n-6\end{cases}
$$

Therefore, $f_{i}+f_{i+1} \geq d-\mathrm{d}\left(x_{i}, x_{i+2}\right)+2$ so item (ii) in Lemma 3.1 is also satisfied. We can conclude that the associated function $f$ is a near-radio labeling of $C_{n}$. The span of $f$ is $f\left(x_{n-1}\right)=\phi(n)(n-1) / 2$ so the desired result follows from item (iv) of Corollary 2.7

The case $n=4 q+3$ where $q$ is a positive multiple of 3 is more complex since the last third of the sequence of integers $d_{i}$ has descriptions that are significantly different from the first two thirds.

Proposition 3.8. If $n=4 q+3$ where $q$ is a positive multiple of 3 , then

$$
r n^{*}\left(C_{n}\right)=\phi(n)(n-1) / 2+1 .
$$

Proof. Let $s=8 q / 3+1$ and for $i=0,1, \ldots, s$,

$$
d_{i}= \begin{cases}2 q+1 & \text { if } i \text { even } \\ q+2 & \text { if } i \text { odd and } i \neq s \\ q+1 & \text { if } i=s\end{cases}
$$

and for $j=0,1, \ldots, q / 3-1$,

$$
\begin{aligned}
d_{(s+1)+4 j} & =d_{(s+1)+4 j+2}=2 q-3 j \\
d_{(s+1)+4 j+1} & =d_{(s+1)+4 j+3}=q+3+3 j .
\end{aligned}
$$

Observe that for $j=0,1, \ldots,(s-1) / 2$, the associated function $\pi$ is equivalent to

$$
\begin{aligned}
\pi(2 j) & =j(3 q+3)(\bmod n)=-j q(\bmod n) \\
\pi(2 j+1) & =j(3 q+3)+2 q+1(\bmod n)=(2-j) q+1(\bmod n)
\end{aligned}
$$

We will show that $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$ is three steps:

Step 1: Let us first show that the set $A=\{\pi(i): i=0,1, \ldots, s\}$ has $s+1$ elements. Suppose to the contrary that this is not true. Therefore, there are two distinct non-negative integers $j$ and $j^{\prime}$ both not exceeding $(s-1) / 2=4 q / 3$ so that one of the two cases below must hold

- $\pi(2 j)=\pi\left(2 j^{\prime}\right)$ or $\pi(2 j+1)=\pi\left(2 j^{\prime}+1\right)$ : From the definition, $\left(j^{\prime}-j\right) q \equiv$ $0(\bmod n)$. Because $q$ and $n$ are both multiples of 3 , the last congruence implies $\left(j^{\prime}-j\right) q / 3 \equiv 0(\bmod n / 3)$. Therefore, since $\operatorname{gcd}(q / 3, n / 3)=1$, we must have $\left(j^{\prime}-j\right) \equiv 0(\bmod n / 3)$, but this is impossible as $0<\left|j^{\prime}-j\right| \leq 4 q / 3<n / 3$.
- $\pi(2 j)=\pi\left(2 j^{\prime}+1\right)$ : From the definition, $\left(j^{\prime}-j-2\right) q+1 \equiv 0(\bmod n)$. Because $q$ and $n$ are both multiples of 3 , the last congruence implies 1 is a multiple of 3 , which is also impossible (note that if $a+b \equiv 0(\bmod c)$ and $m$ divides both $a$ and $c$, then $m$ must also divide $b$ ).

We reached contradictions in both cases, so we conclude that $|A|=s+1$.
Step 2: Next, we will show that $\pi(s+1)$ does not belong to $A$. Suppose for contradiction that it does and set $j^{\prime}=(s+1) / 2=4 q / 3+1=n / 3$. Therefore, there exists an integer $0 \leq j \leq(s-1) / 2=4 q / 3$ distinct from $j^{\prime}$ so that $\pi\left(2 j^{\prime}\right)=\pi(2 j)$ or $\pi\left(2 j^{\prime}\right)=\pi(2 j+1)$. By definition, $\pi(s+1)=\pi(s)+d_{s}(\bmod n)$, hence

$$
\begin{aligned}
\pi\left(2 j^{\prime}\right) & =\pi\left(2\left(j^{\prime}-1\right)+1\right)+(q+1)(\bmod n) \\
& =\left[\left(j^{\prime}-1\right)(3 q+3)+2 q+1\right]+(q+1)(\bmod n) \\
& =j^{\prime}(3 q+3)-1(\bmod n)=-j^{\prime} q-1(\bmod n)
\end{aligned}
$$

Then the equalities $\pi\left(2 j^{\prime}\right)=\pi(2 j)$ or $\pi\left(2 j^{\prime}\right)=\pi(2 j+1)$ will imply $\left(j^{\prime}-j\right) q+1 \equiv$ $0(\bmod n)$ or $\left(j^{\prime}-j+2\right) q+2 \equiv 0(\bmod n)$, respectively. Since $q$ and $n$ are both multiples of 3 , the former congruence implies 1 is a multiple of 3 , and the latter one implies that 2 is multiple of 3 , both impossible, so $\pi(s+1)$ does not belong to $A$.

Step 3: Let $A^{*}=\{0,1, \ldots, n-1\}-A$. The objective is to show that $A^{*}=\left\{\pi^{*}(s+\right.$ $i): i=1,2, \ldots, n-s-1\}$ which, together with Steps 1 and 2 , allows us to conclude that $\pi$ is a permutation of $\{0,1, \ldots, n-1\}$. We will first show that $A^{*}$ coincides with the set $B=\{2+3 i: i=0,1, \ldots, 4 q / 3\}$. We have $|B|=4 q / 3+1=n-s-1=\left|A^{*}\right|$. Therefore, to verify that $A^{*}=B$, it is enough to show that every element in $B$ does not belong to $A$. Suppose this is not true, that is, there are non-negative integers $i$ and $j$ not exceeding $4 q / 3$ such that $\pi(2 j)=2+3 i$ or $\pi(2 j+1)=2+3 i$ which imply $[3 i+j q]+2 \equiv 0(\bmod n)$ or $[3 i-(2-j) q]+1 \equiv 0(\bmod n)$, respectively. Since $q$ and $n$ are both multiples of 3 , the former congruence implies 2 is a multiple of 3 , and the latter implies 1 is a multiple of 3 , both impossible. Therefore $A^{*}=B$. By defining $n^{*}=\left|A^{*}\right|$ and $q^{*}=q / 3$, we have $n^{*}=4 q^{*}+1$. Consider the auxiliary function $\pi^{*}$ on $\left\{0,1, \ldots, n^{*}-1\right\}$ such that $\pi^{*}(0)=0$ and $\pi^{*}(i+1)=\pi^{*}(i)+d_{i}^{*}\left(\bmod n^{*}\right)$ for $i=0,1, \ldots, n^{*}-2$, where $d_{i}^{*}=d_{(s+1)+i} / 3$ for $i=0,1, \ldots, n^{*}-2$, or equivalently,
for $j=0,1, \ldots, q^{*}-1$,

$$
\begin{aligned}
d_{4 j}^{*} & =d_{4 j+2}^{*}=(2 q-3 j) / 3=2 q^{*}-j \\
d_{4 j+1}^{*} & =d_{4 j+3}^{*}=(q+3+3 j) / 3=q^{*}+1+j .
\end{aligned}
$$

We previously argued in the proof of Proposition 3.3 that $\pi^{*}$ is a permutation of $\left\{0,1, \ldots, n^{*}-1\right\}$. From Step 2, we have $\pi(s+1)$ in $A^{*}$, thus let $l$ be the integer so that $\pi(s+1)=2+3 l$ and consider the isomorphism $h$ between sets $\{0,1, \ldots, 4 q / 3\}$ and $A^{*}$ such that $h(i)=2+3(l+i)(\bmod n)$. Since $\pi(s+i)=h\left(\pi^{*}(i-1)\right)$ for $i=1,2, \ldots, n^{*}$, we can conclude $A^{*}=\{\pi(s+i): i=1,2, \ldots, n-s-1\}$.

For $i=0,1, \ldots, n-2$, let $f_{i}=d-d_{i}+2$ or more specifically for $i=0,1, \ldots, s$,

$$
f_{i}= \begin{cases}2 & \text { if } i \text { even } \\ q+1 & \text { if } i \text { odd and } i \neq s \\ q+2 & \text { if } i=s\end{cases}
$$

and for $j=0,1, \ldots, q / 3-1$,

$$
\begin{aligned}
f_{(s+1)+4 j} & =f_{(s+1)+4 j+2}=3+3 j \\
f_{(s+1)+4 j+1} & =f_{(s+1)+4 j+3}=q-3 j .
\end{aligned}
$$

Item (i) in Lemma 3.1 is trivially satisfied as $\mathrm{d}\left(x_{i}, x_{i+1}\right)=\mathrm{d}\left(v_{\pi(i)}, v_{\pi(i+1)}\right)=$ $\min \left\{d_{i}, n-d_{i}\right\}=d_{i}$ (note that the last equality follows because $\left.d_{i} \leq d\right)$. By inspection, we have for $i=0,1, \ldots, n-3$ :

$$
\begin{aligned}
& f_{i}+f_{i+1}= \begin{cases}q+3 & \text { if }(i \leq s-2) \text { or }(i \geq s+1 \text { and } i-s \text { not a multiple of } 4), \\
q+4 & \text { if } i=s-1 \\
q+5 & \text { if } i=s \\
q+6 & \text { otherwise }\end{cases} \\
& d_{i}+d_{i+1}= \begin{cases}3 q+3 & \text { if }(i \leq s-2) \text { or }(i \geq s+1 \text { and } i-s \text { not a multiple of } 4), \\
3 q+2 & \text { if } i=s-1, \\
3 q+1 & \text { if } i=s, \\
3 q & \text { otherwise }\end{cases}
\end{aligned}
$$

Hence $d<3 q<d_{i}+d_{i+1} \leq 3 q+3<n$, and we must have $\mathrm{d}\left(x_{i}, x_{i+2}\right)=n-\left(d_{i}+\right.$ $\left.d_{i+1}\right)$. Then

$$
f_{i}+f_{i+1} \geq q+3 \geq(3 q+3)-2 q \geq\left(d_{i}+d_{i+1}\right)-2 q=d-\mathrm{d}\left(x_{i}, x_{i+2}\right)+2 .
$$

Thus, item (ii) in Lemma 3.1 is also satisfied, and we can conclude that the associated function $f$ is a near-radio labeling of $C_{n}$ with span $f\left(x_{n-1}\right)=\phi(n)(n-1) / 2+1$. The proposition follows from item (iv) of Corollary [2.7.

## 4. Closing Remarks

We provide non-trivial lower bounds for the radio $k$-chromatic numbers of cycles with $n \geq 3$ vertices for all $k$ at least as large as the diameter $d=\lfloor n / 2\rfloor$. These lower bounds coincide with the exact values when $k=d$ as shown in Liu and Zhu [13]. We could also confirm our lower bounds are exact when $k=d+1$, but exhibiting radio $k$-labelings with spans achieving these bounds was considerably challenging in some instances. We conjecture that similar techniques could also be used to find exact radio $k$-chromatic numbers of cycles for other $k>d+1$, but they may not be straightforward extensions of the ones used for the case $k=d+1$. The lower bounds' dependence on the relationship between $k$ and $n$ makes it unlikely that a general set of labeling schemes could achieve the radio $k$-chromatic number for different $k$.

## Acknowledgments

The authors would like to thank Sarah Spence Adams for handling administrative requirements regarding student research credits. The authors are also in debt to the referee for his/her helpful comments and suggestions. Denise Sakai Troxell would like to thank Babson College for its support through the Babson Research Scholar award.

## References

[1] R. Čada, J. Ekstein, P. Holub and O. Togni, Radio labelings of distance graphs, Discrete App. Math. 161(18) (2013) 2876-2884.
[2] T. Calamoneri, The $L(h, k)$-labelling problem: A survey and annotated bibliography, Comput. J. 49(5) (2006) 585-608.
[3] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127(1) (2002) 57-69.
[4] G. Chartrand, L. Nebeský and P. Zhang, Radio $k$-colorings of paths, Discuss. Math. Graph Theory 24(1) (2004) 5-21.
[5] D. Der-Fen Liu, Radio number for trees, Discrete Math. 308(7) (2008) 1153-1164.
[6] J. P. Georges, D. W. Mauro and M. A. Whittlesey, Relating path coverings to vertex labellings with a condition at distance two, Discrete Math. 135 (1994) 103-111.
[7] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5(4) (1992) 586-595.
[8] J. Juan and D. Liu, Antipodal labelings for cycles, Ars Combin. 103 (2012) 81-96.
[9] M. Kchikech, R. Khennoufa and O. Togni, Linear and cyclic radio $k$-labelings of trees, Discuss. Math. Graph Theory 27(1) (2007) 105-123.
[10] M. Kchikech, R. Khennoufa and O. Togni, Radio $k$-labelings for Cartesian products of graphs, Discuss. Math. Graph Theory 28(1) (2008) 165-178.
[11] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohem. 130(3) (2005) 277-282.
[12] S. R. Kola and P. Panigrahi, Nearly antipodal chromatic number $a c^{\prime}\left(P_{n}\right)$ of the path $P_{n}$, Math. Bohem. 134(1) (2009) 77-86.
[13] D. D.-F. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19(3) (2006) 610-621.
N. Karst et al.
[14] L. Saha and P. Panigrahi, Antipodal number of some powers of cycles, Discrete Math. 312(9) (2012) 1550-1557.
[15] L. Saha and P. Panigrahi, A lower bound for radio $k$-chromatic number, Discrete App. Math. 192 (2015) 87-100.
[16] U. Sarkar and A. Adhikari, On characterizing radio $k$-coloring problem by path covering problem, Discrete Math. 338(4) (2015) 615-620.

