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Wintertime climate variability over the North Atlantic 
is substantially associated with the North Atlantic 
Oscillation (NAO), which is characterized by a sea level 

pressure (SLP) pattern with anomalies of one sign over Iceland and 
of the other over the subtropical Atlantic1. Changes in the polarity 
of this pattern are associated with changes in the storm track, which 
in turn influence temperature and precipitation from the North 
Atlantic to central Eurasia2. Several studies argue that the nearly 
periodic 11-year solar cycle can influence the NAO in winter3–7.  
These studies suggest that during peaks in the sunspot cycle the NAO 
is more probably found in its positive polarity, with below (above) 
average SLP over Iceland (subtropical Atlantic). Most recently, it 
was reported that the NAO signal maximizes approximately 2–4 
years after peaks in the sunspot cycle4,7. Based on the proposed 
connection, mild and wet winters would be expected over much of 
Eurasia after a peak in the solar cycle. Given the regularity of the 
sunspot cycle, this would promise the real possibility of extended 
decadal predictability of the Northern Hemisphere climate3,8.  
However, the robustness of the observed connection is unclear, and 
the mechanism whereby a small radiative forcing from the solar 
cycle (~0.2 W m−2) causes a change in an index as noisy as the NAO 
remains elusive.

It is well established that an increased ultraviolet absorption around 
solar cycle maxima causes warming and increased ozone in the upper 
stratosphere9. Solar-induced changes in stratospheric temperatures pro-
duce circulation anomalies, which may induce a change in the polarity 
of the NAO via a ‘top-down’ mechanism3,10–12. However, a lag of several 
years in the NAO response4,7 is difficult to reconcile with the fast times-
cale of stratosphere–troposphere coupling13. Some modelling evidence 
indicates a lagged response in the NAO5,6,14. However, these studies are 
either based on simplified models forced with idealized step-like solar 
forcing perturbations5 or include both solar and other climate forcings, 
such as greenhouse gases (GHGs) and volcanic eruptions6,14. Moreover, 
modelling studies that claim an apparent solar signal in the NAO are 
inconsistent in the estimated time lag between the solar maxima and 
NAO response, ranging from 0 years3, 1–2 years14 and up to 3–4 years5,6.

Uncertainties also remain in the characterization of observed 
solar/NAO connections, as previous observational studies have 
only examined the solar signal in a single SLP reconstruction4. Such 
reconstructions typically assimilate a limited number of observa-
tions prior to 1950, and thus carry considerable uncertainty over the 
earlier periods. Correlations between solar variability and weather 
phenomena have long been proposed15, but many examples exist 
of solar connections being refuted on the basis of careful statisti-
cal analysis and/or additional observations16–18. These challenges 
suggest the need to investigate the robustness of the proposed solar 
signal in the NAO.

The solar signal in the NAO in observations
We start by reproducing previous results4,7 using Hadley Center 
Sea Level Pressure version 2 (HadSLP) reconstructions of the 
North Atlantic SLP and expand on them by analysing additional 
data sets: National Center for Environmental Prediction Twentieth 
Century Reanalysis (20th Century), European Centre for Medium-
Range Weather Forecasts 20th Century reconstruction (ERA20) 
and National Oceanic and Atmospheric Administration (NOAA) 
(Methods). We calculated the winter mean NAO index in these 
reconstructions and explored the statistical relationship between 
this index and the sunspot number (SSN), also referred to here as 
the solar index. Peaks in the NAO appear to coincide within a few 
years with peaks in the solar index over the later but not the earlier 
periods (Fig. 1a). To quantify this, we show in Fig. 1b the linear 
correlation between the NAO and the solar index over overlapping 
40-year windows, shifted by 1 year at a time. Here, we lagged the 
solar index by two years, as this is the lag that gives the most robust 
SLP signal (Supplementary Figs. 1 and 2), consistent with previous 
results4. In all reconstructions, a lagged correlation is only seen in 
the later part of the record (after 1960). At its maximum (r ≈​ 0.3), 
the correlation implies that a small but important (~10%) fraction 
of the NAO variance might be explained by the solar cycle.

We then examined the pattern of the North Atlantic SLP associ-
ated with the solar index, taking into account several well-known 
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signals of climate variability. Specifically, over the full period 
covered by each reconstruction we performed a multiple linear 
regression between SLP and the solar index, the El Ninõ-Southern 
Oscillation (ENSO), aerosol optical depth (AOD), and a linear trend 
(Methods). We then analysed the spatial pattern of the regression 
coefficients associated with the lagged solar index, calculated by 
shifting the index one year at a time so that the SLP data lag the solar 
index, as done in other studies4,7. Supplementary Figs. 1 and 2 show 
the pattern of the solar regression coefficient in each reconstruc-
tion as a function of the lag (in years) used in the solar index. We 
see the emergence of a pattern that consists of positive (negative)  
SLP anomalies in the south (north), a pattern typically associated 
with the positive NAO phase. This pattern is clearest at a lag of two 
years; this result is robust across all reconstructions when a com-
mon period is chosen across them (1901–1997 (Fig. 2)), which 
confirms the optimality of this lag in extracting a potential solar sig-
nal in the NAO. Even when using an ‘optimal’ time lag in the solar 
index, the solar regression coefficient is smaller than that associated 
with ENSO (Supplementary Fig. 3). Moreover, this pattern emerges 
in the later period (1958–1997) (Supplementary Fig. 4a–d)—con-
sistent with Fig. 1b—but is not seen in other periods (1901–1940) 
(Supplementary Fig. 4e–h).

The overall pattern shown in Fig. 2 is suggestive of a possible 
solar signal in the NAO, but not conclusively so given the depen-
dence of the signal on the analysis period. The relationship could be 
non-stationary, due to non-linear interactions with changes in the 
mean state19 or due to the amplitude of the sunspot cycle variability, 

which appears to be larger in recent decades (Fig. 1a) and possibly 
results in a larger forcing of the NAO. An alternative explanation 
is that the solar signal is a manifestation of internal variability. To 
ascertain whether this pattern reflects a true solar signal, we turn to 
climate model simulations.

The solar signal in the NAO in models
We use the Community Earth System Model version 1.2, configured 
with the Whole Atmosphere Community Climate Model version 4  
(WACCM) as its atmospheric component20, coupled to ocean, 
sea-ice and interactive stratospheric ozone chemistry. This model 
simulates a realistic representation of shortwave heating and, con-
sequently, of the upper atmospheric response to solar variability12. 
We performed a 500-year long ocean-coupled integration, forced 
solely with a time-varying spectrally resolved solar forcing (here-
after referred to as WACCM SOL) to yield a total solar irradiance 
(TSI) of 1361.5 ±​ 0.5 W m−2. Solar variability in this integration 
is implemented by repeating 12 times, for each band of the solar 
spectrum, the sequence of the last four solar cycles (20–23) in the 
CMIP5 forcing data set21. These cycles are among the strongest on 
record, and produce the largest solar/NAO correlation (Fig. 1b). 
Moreover, the spectrally resolved solar flux over these cycles covers 
the satellite period, and is thus better constrained than over earlier 
cycles22. Most importantly, all non-solar forcings, such as GHGs and 
volcanic aerosols, are kept constant at year 2000 values to improve 
detection of the solar signal, unlike previous studies based on model 
simulations with time-varying solar and non-solar forcings4,6,14.  
As a result of imposing constant GHG levels, our integration is in a 
steady state and can thus be used to study the solar/NAO connec-
tion in the absence of any mean state changes that could interfere in 
the detection of solar signals in the NAO.

The upper stratosphere is where the most robust solar signal 
is expected based on ultraviolet absorption by the ozone layer23–26. 
Hence, we first focused on this region to validate the modelled 
atmospheric response to the solar cycle. To diagnose the solar sig-
nal in the observations, we regressed the upper stratospheric tem-
perature data from the Stratospheric Sounding Unit (SSU)27 and 
compared this regression against the output from the WACCM 
SOL simulation, interpolated onto the same SSU kernel (Methods). 
In the SSU, we found a statistically significant warming of 0.6 K 
(temperature change per solar cycle) in the tropics (Supplementary 
Fig. 5), in agreement with previous studies27,28. The simulated and 
SSU values in this region are in excellent agreement, whereas in 
higher latitudes they lie within statistical uncertainty. The model 
also shows a stratospheric ozone increase of ~1–2% in the middle 
stratosphere at 1–10 hPa (Supplementary Fig. 6), in good agree-
ment with observations29. Averaged over 500 years, we found 
no evidence of a strengthening of the stratospheric polar vortex 
with peaks in the solar index, which may seem in contrast with 
National Centers for Environmental Prediction data for 1979–2008 
(Supplementary Fig. 7). However, averaging over shorter (30 year) 
periods, we found that the model is not inconsistent with reanalysis 
(Supplementary Section B).

That our model captures the impact of solar variability on the 
chemical and thermal structure of the stratosphere increases our con-
fidence in it as a tool for testing the hypothesis of a robust solar signal 
on the NAO. Thus, we analysed the relationship between a lagged 
solar index in the 500-year long model integration (TSI) and North 
Atlantic SLP. As our observational analysis, we performed a regression 
on all the available overlapping 100-year periods from the WACCM 
SOL simulation using a 2-year lag for the solar index, and contrasted 
these with the reconstructions (1901–1997). We can identify 100-year 
segments of the WACCM SOL simulation with SLP regression pat-
terns that resemble those in observations (compare Figs. 2 and 3a).  
However, we can also identify other 100-year segments of the simula-
tion with SLP patterns that are dissimilar (Supplementary Fig. 8a). 
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Fig. 1 | Statistical relationship between solar variability and the NAO 
index in observations. a, Time series of the SSN (blue) versus the NAO 
index calculated in four different reconstructions (red). b, The 40-year 
running mean correlation between SSN and the NAO at a lag of 2 years. 
The year on the x axis is the central year used in the 40-year windows. 
The grey shading represents the spread across individual 20th Century 
ensemble members. The blue and black horizontal bars denote the  
90 and 95% significance levels (based on a Student t-test).
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This indicates that the SLP response is not robust across the 500 years 
of integration, although patterns that are similar to the observations 
can be found when using 100-year long records.

To gain further insight, we then turned our attention to another 
500-year long WACCM simulation in which the solar flux was set to 
a constant value of 1,361.5 W m−2 rather than varying in time—we  
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refer to this simulation as the WACCM NOSOL experiment.  
We computed the regression of North Atlantic SLP from this simu-
lation with the 2-year lagged time-varying solar index. A time-vary-
ing solar index is inconsistent with the solar forcing imposed in this 
model integration and is deliberately used to determine whether  
the observed pattern in Fig. 2 might arise spontaneously from inter-
nal variability, without any influence by the 11-year solar cycle.  
Indeed, we can identify 100-year periods in WACCM NOSOL 
that exhibit SLP patterns which resemble the observed one  
(compare Figs. 2 and 3b). This finding weakens the suggestion that 
the observed pattern is a response to solar forcing and strengthens 
the case for internal variability.

To verify this result in other models, we analysed simulations 
from two large initial-condition ensemble experiments, performed 
with the Community Atmosphere Model version 5 (LENS-CAM5)30 
and the Canadian Earth System Model version 2 (CanESM2)31. 
Both simulations are 1,000 years long with a constant TSI of 
1,361.5 W m−2. As in WACCM NOSOL, we found 100-year seg-
ments in which the overall SLP patterns are similar to observations 
(compare Fig. 2 with Fig. 3c,d). Again, we found other 100-year 
segments in which this is not the case (Supplementary Fig. 8c,d). 
These findings bring into question the assertion that the NAO is 
robustly influenced by solar variability. To gain conclusive insight 
into the role of internal variability, we next quantified the likelihood 
of detecting the observed solar/NAO signal.

Probability of a solar cycle connection
We first extracted the solar signal in the NAO index, by regressing 
the latter against a lagged solar index, ENSO, AOD and linear trend. 
In this calculation, the solar/NAO signal is the regression coefficient 
associated with the 2-year lagged solar index, measured in units of 
standard deviations of the NAO per solar cycle variation. The solar/ 
NAO signal in SLP reconstructions evaluated over 1958–1997  
(covering cycles 20–23) is 0.80 ±​ 0.11, using 95% confidence intervals 
on the reconstruction average (Fig. 4a). The WACCM SOL simulation 
is based on 12 repetitions of solar cycles 20–23 (black dots in Fig. 4a):  
from these we obtain a mean solar/NAO signal of 0.24 ±​ 0.26, where 
confidence intervals are on the mean evaluated at the 95% confi-
dence level (red bar in Fig. 4a). The 5–95% range of coefficients is 
0.24 ±​ 0.70. In words, (1) we did not find a robust solar signal and 
(2) the observed signal, although statistically significant, is within 
the range of internal variability simulated in the model.

We then considered the distribution of solar/NAO signals in the 
WACCM NOSOL simulation, recalling that the solar flux is kept 
constant here so that any solar/NAO linkage arises by chance. We 
considered all the overlapping 40-year segments (equivalent to 
1958–1997). The histogram of the solar regression coefficient in the 
NAO is shown in Fig. 4a. The observed signals over the recent past 
decades fall within the distribution and are at the ~87th percentile 
of the simulated signals in WACCM NOSOL, the latter being due 
to internal variability alone. A similar conclusion is drawn from 
LENS-CAM5 and CanESM2 (Supplementary Fig. 9a,c). Although 
the observed signals are at the upper end of the simulated values, 
they cannot be statistically distinguished from internal variability, 
as the odds of finding a signal that exceeds the observed value in 
unforced model simulations are generally higher than 10%.

This conclusion is strengthened by using a longer 97-year period 
(1901–1997) (Fig. 4b and Supplementary Fig. 9b,d)—the observed 
signals then fall within the ~80th percentile of the unforced model 
simulations. Thus, internal variability appears capable of generating 
decadal signals in the NAO that can erroneously be attributed to the 
solar cycle in the observational record.

The NAO index is a complex time series that consists of super-
imposed fluctuations across a broad spectrum of frequencies32. To 
isolate NAO variations in the range of frequencies associated with 
the solar cycle, Thiéblemont et al.14 applied a band-pass filter to 

exclude variations outside the range of 9–13 years. In a 150-year 
long WACCM simulation employing time-varying irradiance they 
found some phasing between the simulated band-pass filtered NAO 
index and the solar index. In contrast, in a 150-year simulation with 
constant irradiance they found no such coherence. From this, they 
concluded that quasi-decadal variations in the NAO index may have 
some degree of ‘synchronization’ with the solar cycle. Nevertheless, 
the synchronization seen in Thiéblemont et al.14 is far from per-
fect—peaks and valleys in their simulated band-pass filtered NAO 
index line up with the peaks and valleys in the solar index in some 
but not in all periods. This is analogous to what we have shown 
above in the unfiltered NAO index in observations and simulations, 
and once again, raises the issue of robustness.

We explored the synchronization hypothesis14 by analysing our 
longer WACCM simulations (500-year as compared to 150-year 
in Thiéblemont et al.14) and a wavelet analysis, which allowed us 
to investigate the time evolution of the NAO frequency spectrum 
without tampering with its integrity through filtering. Figure 5a 
shows that in SLP reconstructions (for simplicity, we only show 
HadSLP), there is an enhanced spectral power on interannual (3–5 
years), quasi-decadal (7–9 years) and multi-decadal (20–25 years) 
timescales, in agreement with other studies32–34. Spectral peaks 
in these frequencies come and go over time32,35. During the times 
of increased variance in any of these frequencies, there is over-
lap between these spectral peaks and the 10–12-year frequency,  
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characteristic of the sunspot cycle. As a result, decadal oscillations 
can map onto the sunspot cycle frequency: this is seen, for example,  
around 1970–1980 in HadSLP (Fig. 5a), and is consistent with the 
larger solar/NAO correlation obtained in this period (Fig. 1b).  
WACCM reproduces these sporadic appearances at the 10–12 year 
frequency, irrespective of the presence of a solar cycle forcing. 
Compare, for instance, the wavelet analysis in WACCM SOL and 
WACCM NOSOL in Fig. 5b,c. These periods of enhanced power at 
decadal timescales are consistent with the location of 100-year long 
segments, over which a significant solar/NAO signal is seen (that is,  
years 390–489 in WACCM SOL and years 130–229 in WACCM 
NOSOL (Fig. 3a,b)). Overall, the presence of a solar cycle only 
slightly enhances power at decadal frequencies, but this is not sig-
nificant over the 500-year period (Supplementary Fig. 10). Hence, 
quasi-decadal variations in the NAO, such as those attributed to the 
solar variability, can arise due to internal variability alone.

Implications for predictability
Our results clearly show that quasi-decadal (11-year) variations in 
the North Atlantic SLP, such as those commonly attributed to solar 
variability, can be a manifestation of internal variability. Variability 
of the NAO at decadal timescales can arise naturally, without exter-
nal drivers other than ocean–atmosphere coupling. Using long 
coupled model simulations forced with a realistic solar cycle vari-
ability, we show here that the forced response of the NAO is weak 
compared to the range of internal variability. Using 12 repetitions of 
solar cycles 20–23, we obtained a standard deviation (the ‘noise’) of 
~0.40 and an average (the ‘signal’) of 0.24, that is a signal-to-noise 
ratio of ~0.6. Hence, the prediction skill in winter circulation over 
the North Atlantic may not be significantly enhanced by including 
solar forcing. These results are in contrast with recent modelling 
studies that suggest a robust solar link in the NAO3,5,14: possible rea-
sons for the disagreement are the more realistic solar forcing and the 
longer simulations considered here. In support of this explanation,  

we found that one needs an unrealistically large forcing to obtain 
a significant ‘top-down’ influence on the NAO in our model 
(Supplementary Section C).

Our results are consistent with the negligible role of solar 
variability in NAO reconstructions over the past millennium36, 
and the non-stationarity of the statistical link between the solar 
cycle and the NAO in the twentieth century (Fig. 1b). Several 
caveats might affect our conclusions. First, the lack of a solar 
signal in the NAO in the early part of the 20th century could 
be due to the scarcity of observations prior to 1950. Second, the 
predictable component of the NAO in the current generation of 
climate models appears to be sometimes lower than observa-
tions37. Hence, the modelled NAO may not be sufficiently sensi-
tive to external forcings, which include the solar cycle. In spite 
of these caveats, our results call for caution against interpreting 
quasi-decadal signals in the relatively short observational record. 
Longer records are needed for an improved characterization of 
a forced response and internal variability in the mid-latitude  
wintertime circulation.

Online content
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Methods
Observational data sets. To analyse the solar signal in the North Atlantic boreal 
winter SLP fields, we used winter mean (December–January–February (DJF) 
average) SLP data from four reconstructions: HadSLP38, 20th Century39, ERA2040 
and the Extended Reconstructed SLP data set from the NOAA41. HadSLP is on 
a 5° latitude times 5° longitude global grid, and covers the 1860–2007 period38. 
The 20th Century Re-analysis V2 SLP is on a 5° grid, and provides 55 individual 
members (using different initial conditions) covering the period 1872–201439. The 
NOAA Extended Reconstructed SLP has a 2° resolution, and covers the 1852–1998 
period41: this data set only provides SLP over the ocean. Finally, the ERA20 data set 
is on a 1° global grid and covers the 1900–2010 period. For practical purposes, we 
used the reconstructed data in their native grid resolution (hence, the land portion 
of the NOAA data is masked out) and considered both the full available period 
covered by each reconstruction (for example, Supplementary Fig. 1) as well as the 
common period (1901–1997).

These products provide a comprehensive global atmospheric circulation data 
set that spans the twentieth century. Prior to the satellite and radiosonde era (that 
is, before 1950), they mostly assimilate surface pressure and surface marine wind 
observations taken from the International Comprehensive Ocean–Atmosphere 
Data Set and land observations from available stations around the globe. Despite 
similarities in their sources of data, these products employ different assimilation 
schemes and numerical models, and can thus be deemed as four independent 
observational data sets.

Models. The WACCM model is coupled to the Parallel Ocean Program 
ocean circulation model. This model employs a nominal latitude–longitude 
resolution of 1° (down to 1/4° in latitude in the equatorial tropics)42. The 
resolution in WACCM is 1.9° latitude and 2.5° longitude with 66 vertical levels 
and an upper boundary at 140 km, which provides a well-resolved middle 
atmosphere. The standard configuration of WACCM includes a fully interactive 
stratospheric chemistry module, which calculates more than 100 gas-phase 
chemical reactions and the advection of chemical species43. Most importantly, 
stratospheric ozone is fully interactive. Photolysis rates are calculated  
in-line using a resolution of 66 bands that covers all absorption lines  
from 120 nm onwards44.

Experiment design. We performed two 500-year long ocean-coupled integrations 
from WACCM, using a constant year 2000 boundary condition: one integration 
with a time-varying irradiance forcing (WACCM SOL), and one with a constant 
irradiance forcing (WACCM NOSOL). In WACCM SOL, we repeated the 
sequence of the last four sunspot cycles on record (that is cycles 20, 21, 22 and 23) 
throughout the 500 year integration. The spectral solar irradiance forcing and its 
variability are taken from Wang et al.21, consistent with the solar forcing employed 
in historical integrations from CMIP545. To create a spectrally resolved 500-year 
long solar forcing record for the WACCM SOL integration, we took the sequence 
of solar cycles 20–23 for each individual spectral band from 121 to 1,500 nm from 
Wang et al.21, and repeated such a sequence 12 times. In WACCM NOSOL, we 
used an average spectral solar irradiance forcing averaged over the last four cycles, 
and the resulting TSI is 1,361.5 W m−2. Other forcings, such as GHGs and ODSs, 
were set at year 2000 values. To isolate the effects of solar irradiance, we excluded 
energetic particle forcing. To include a representation of the quasi-biennal 
oscillation in stratospheric winds, we included a periodic (28 months) quasi-
biennal oscillation forcing in all the integrations46.

To assess the range of internal variability in the North Atlantic SLP, 
irrespective of the presence of the 11-year solar cycle, we also complemented 
the WACCM runs with 1,000-year long pre-industrial integrations from two 
other models and imposed a constant TSI forcing. More specifically, we used 
one CAM5 integration from the ‘Large Ensemble’30 and one CanESM2 run31. 
Both runs thus mimic the set-up of WACCM NOSOL, except for the boundary 
conditions, which are set at 1850.

Stratospheric temperature data. To analyse the observed solar signal in the upper 
stratospheric temperature and validate models, studies have typically employed 
reanalysis data sets that span the satellite period (1979 to present)12,47. However, it 
has been shown that in the upper stratosphere these products suffer from abrupt 
jumps when observational data from new satellite instruments are introduced. 
Moreover, they are poorly constrained, as radiosonde observations are not 
available in this atmospheric region. Both issues lead to a possible overestimate 
of the equatorial upper stratospheric solar signal in reanalysis26, which limits 
the usefulness of these products for the validation of models and their ability to 
capture the atmospheric response to solar variability. To overcome these issues, 
we validated the solar response in WACCM SOL against data from the SSU27. 
For the models and SSU comparison (Supplementary Fig. 5a), we examined the 
period covered by SSU from 1979 to 2016. Specifically, we used data from Channel 
3 of the SSU, which has a weighting function that peaks at around 50 km, which 
provides an estimate of the upper stratospheric temperature. To directly compare 
the satellite data and model output, we applied the same SSU kernel function on 
atmospheric temperature to the WACCM SOL simulation output, taken from 
the full 500-year long simulated period. Then, we extracted the observed and 

simulated solar signals via regression, with TSI as the predictor instead of SSN, to 
be consistent with the actual forcing imposed in WACCM SOL.

Statistical analysis. The NAO is calculated by using principle component analysis 
(PCA), following the definition proposed in the literature48. More specifically, we 
took the first principal component and analysed its deseasonalized anomalies for 
the DJF season. Anomalies were taken against the mean of the entire data series. 
The 11-year solar signal in the DJF mean SLP, and stratospheric temperature was 
extracted by means of multiple linear regression analysis using predictors that 
are consistent with the boundary conditions of the pertaining data set. Hence, in 
observations we used the SSN available at www.sidc.be/silso/datafiles, the observed 
NINO3.4 index (www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.
anom.data), an AOD index (https://data.giss.nasa.gov/modelforce/strataer/) and  
a linear term.

Following the analysis method in ref. 4, the solar regression coefficient in 
reconstructed SLP data is obtained by regressing de-seasonalized DJF mean SLP 
(in hPa) onto standardized anomalies of the SSN index, as well as the ENSO; 
reflecting teleconnected variability from the tropical Pacific), 3) stratospheric 
aerosol (AOD; representing volcanic influences) and 4) a term that is linear in time 
(representing combined anthropogenic influences). The lagged solar regressions 
are then calculated by shifting the index one year at a time so that the SLP data lag 
the solar index, with all other indices kept at zero lag, following Gray et al.4,7. Then, 
we multiplied the regression coefficient by the maximum peak-to-trough variation 
(in s.d. units) of the SSN to obtain an estimate of the maximum likely response of 
SLP (hPa) to variations in the Sun’s output. This same procedure was repeated for 
the regression of SLP data from the models, using TSI as a predictor instead of the 
SSN, to be consistent with the actual forcing imposed in the model. In practice, 
DJF mean values of SSN and TSI were highly correlated (0.97), so the results are 
not sensitive to the choice of the solar index in the observational analysis. For the 
model results, we specifically chose 100-year periods, because this is close to the 
length of the common period covered by all four reanalysis data sets (1901–1997; 
that is, 97 years). The simulation periods shown in Fig. 3 were selected by 
calculating the running-mean correlation of the NAO index and TSI, and finding 
the peaks in such correlations. The statistical significance of all the regression 
coefficients was assessed by using a two-sided Student’s t-test, including an AR-1 
correction in the confidence intervals24,49.

Calculation of NAO distributions in unforced model simulations. For the 
calculation of the histograms of the solar regression in the NAO in simulations 
without a solar cycle forcing, we considered all the maximally overlapping (shifted 
by 1 year at a time) periods of length equivalent to the period that spanned solar 
cycles 20–23 (40 years), and used the observed (time-varying) 2-year lagged 
solar index in the regression of the NAO from WACCM SOL, LENS-CAM5 
and CanESM2. The procedure was repeated on 40-year (97-year) periods, for 
comparison with the short (1958–1997) and full (1901–1997) common period 
across the four reconstructions.

Spectral analysis of the NAO. Finally, we performed time-frequency and spectrum 
analyses of the calculated NAO index from the reconstructions and the WACCM 
simulations by using the continuous wavelet toolbox available in Matlab (www.
mathworks.com/products/wavelet.html) as well as the multitaper power spectral 
density (www.mathworks.com/help/signal/ref/pmtm.html).

Code availability
The source code of the WACCM model is part of the Community Earth System 
Model version 1.2.0, which is publicly distributed and can be obtained after 
registration at www.cesm.ucar.edu/models/cesm1.2/. All the figures were 
produced with Matlab, version R2017a, available at www.mathworks.com. The 
algorithm used to perform regression, PCA and wavelet analysis was written 
using built-in functions from the same Matlab distribution. More specifically, 
regression analysis is based on the regstats function (www.mathworks.com/help/
stats/regstats.html), the wavelets on the CWT function (www.mathworks.com/
help/wavelet/ref/cwt.html) and the PCA on the SVD function (www.mathworks.
com/help/matlab/ref/svd.html).

Data availability
HadSLP, NOAA and 20th Century reconstructions data were provided by the 
NOAA/OAR/ESRL PSD from their website at www.esrl.noaa.gov/psd/. ERA20 
data were provided by ECMWF from their website at www.ecmwf.int/en/forecasts/
datasets/archive-datasets/reanalysis-datasets/era-20c. The SSU data are available 
at www.remss.com/measurements/upper-air-temperature/. The CanESM2 model 
data are available at http://climate-modelling.canada.ca/climatemodeldata/
cgcm4/CanESM2/esmControl/index.shtml. The LENS-CAM5 model data are 
available through the Climate Data Gateway, hosted at NCAR and are accessible 
at www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.output.html. Finally, the 
WACCM model data are stored and available in the HPSS archive on the NCAR’s 
Computational and Information Systems Lab, located at www2.cisl.ucar.edu/
resources/storage-and-file-systems/hpss/access.
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