Maps, Bridges, Networks, and Art Galleries: Introducing Secondary Students to Graph Theory through Classic Problems

Jessie Oehrlein
Columbia University

January 18, 2020

Context of Courses

- 50 minute classes
- Middle or high school students
- Bridges, Maps, and Networks: broad introduction to graph theory
- How to (Mathematically) Guard an Art Gallery: introducing and using graph theory with one problem as motivation
- Prerequisites: Comfort with using variables, reading algebraic expressions

Why Classic Problems?

Eric W. Weisstein, Contiguous USA Graph

- Accessible
- Mix familiar and new ideas
- Helped establish or build subfields

Bridges, Maps, Networks Class Structure

Bridges of Königsberg problem. Definitions of graph, vertex, edge, degree, cycle, Eulerian path/cycle.

Routing problems.
Structures
in graphs.
Chromatic graph theory.

Network theory.

Bridges, Maps, Networks Student Survey Responses

Favorite Parts:

- Bridges (5/29): "bridge/island examples," "applying a real-world situation (bridges) first before learning about graph theory"
- 5-Color Theorem Proof (8/29): "the revelation at flipping the colors of 2 and 4"
- Other Aspects of Maps (4/29): "drawing maps and then seeing the connection between those maps and graphs," "creating an example that needed four colors"
- Networks (6/29): "learning measures of centrality,"
- Hands-on aspect (5/29): "figuring out certain problems then discussing their solutions"

Bridges, Maps, Networks Student Survey Responses

Recommendations for Changes:

- Pace (12/29): "wish we had more time to talk about networks," "the proof for 5 colors was explained too quickly"
- Handout (3/29): "have resource list," "handout so it's easier to follow"
- Interaction (3/29): "have more puzzles, especially for networks part," "maybe more student interaction?"

How to (Mathematically) Guard an Art Gallery

How many 360° cameras placed at the gallery's vertices are necessary to guard an n-gonal art gallery?

Examples and key proof idea.

Triangulation, trees, and duals.

Color vertices and place cameras.

Discuss variations of problem.

Art Gallery Student Survey Responses

Favorite Parts:

- Particular Mathematical Ideas (12/26, 6/15): "the discussion of triangulation and how [the dual] must always be a tree"
- Finale (5/26, 2/15): "when I realized that you can just put a camera at each of one color," "how it comes together in the end"
Recommendations for Changes:
- Pace $(2 / 26,3 / 15)$: "the first part of the class could have gone faster and the second gone slower"
- More depth or examples $(5 / 26,6 / 15)$: "Would be interesting to try for a set of definite shapes," "more depth for the additional questions"

