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An L(2, 1)-labeling of a graph G is a function assigning a nonnegative integer
to each vertex such that adjacent vertices are labeled with integers differing by
at least 2 and vertices at distance two are labeled with integers differing by at
least 1. The minimum span across all L(2, 1)-labelings of G is denoted λ(G).
An L ′(2, 1)-labeling of G and the number λ′(G) are defined analogously, with
the additional restriction that the labelings must be injective. We determine
λ(H) when H is a join-page amalgamation of graphs, which is defined as fol-
lows: given p ≥ 2, H is obtained from the pairwise disjoint union of graphs
H0, H1, . . . , Hp by adding all the edges between a vertex in H0 and a vertex
in Hi for i = 1, 2, . . . , p. Motivated by these join-page amalgamations and the
partial relationships between λ(G) and λ′(G) for general graphs G provided by
Chang and Kuo, we go on to show that λ′(G)=max{nG −1, λ(G)}, where nG is
the number of vertices in G.

1. Introduction

In a well-studied model of the classic channel assignment problem introduced
in [Hale 1980], each vertex of a graph G represents a transmitter in a communica-
tions network, and edges connect vertices corresponding to transmitters operating
in close proximity which must receive sufficiently different frequencies to avoid
interference. In a simplified instance of the problem, a frequency assignment is
represented by an L(2, 1)-labeling of G, which is a function f from the vertex
set to the nonnegative integers such that | f (x)− f (y)| ≥ 2 if vertices x and y are
adjacent and | f (x)− f (y)| ≥ 1 if x and y are at distance two. L(2, 1)-labelings and
their variations have been studied extensively since their introduction in [Griggs
and Yeh 1992] (see the surveys [Calamoneri 2011; Griggs and Král 2009; Yeh
2006]) and continue to generate a rich literature to this date (see a sample of the
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most recent works in [Calamoneri 2013; Franks 2015; Karst et al. 2015; Li and
Zhou 2013; Lin and Dai 2015; Lu and Zhou 2013; Shao and Solis-Oba 2013]).

An L(2, 1)-labeling of a graph G that uses labels in the set {0, 1, . . . , k} will
be called a k-L(2, 1)-labeling. The minimum k so that G has a k-L(2, 1)-labeling
is called the λ-number of G, denoted by λ(G). Griggs and Yeh [1992] con-
jectured that λ(G) ≤ 12(G), where 1(G) denotes the maximum degree of G.
This conjecture holds for 1(G) ≥ 1069 [Havet et al. 2012], but it remains open
even when 1(G) = 3. The best general upper bound yet established is λ(G) ≤
12(G) + 1(G) − 2 [Gonçalves 2008]. Recently, it has been proven that this
conjecture also holds for small enough graphs, namely, graphs with at most
(b1(G)/2c+ 1)(12(G)−1(G)+ 1)− 1 vertices [Franks 2015]. As the general
problem of determining λ(G) is NP-hard [Georges et al. 1994], a significant body of
literature has focused on finding bounds or exact λ-numbers for particular classes of
graphs. In particular, [Adams et al. 2013] focused on the amalgamations of graphs.

Definition 1.1. Let H1, H2, . . . , Hp be p≥2 graphs each containing a fixed induced
subgraph isomorphic to a graph H0. The amalgamation of H1, H2, . . . , Hp along H0

is the simple graph H = Amalg(H0; H1, H2, . . . , Hp) obtained by identifying
H1, H2, . . . , Hp at the vertices in the fixed subgraphs isomorphic to H0 in each
H1, H2, . . . , Hp respectively. H0 is referred to as the spine and Hk as the k-th page
of the amalgamation for k = 1, 2, . . . , p. (We refer the reader to [Adams et al.
2013] for some concrete examples.)

In [Adams et al. 2013], upper bounds for the λ-number of the amalgamation of
graphs along a given graph were established by determining the exact λ-number of
amalgamations of complete graphs along a complete graph. They also provided the
exact λ-numbers of amalgamations of rectangular grids along a path, or more specif-
ically, of the Cartesian products of a path and a star with spokes of arbitrary lengths.
This focus on the Cartesian products motivated us to investigate amalgamations of
the join of graphs.

Definition 1.2. Let G1 and G2 be two disjoint graphs. The union G1 ∪G2 is the
graph with vertex (resp., edge) set equal to the union of the vertex (resp., edge)
sets of G1 and G2. The join G1+G2 is obtained from G1 ∪G2 by adding an edge
between each vertex in G1 and each vertex in G2.

Definition 1.3. Let G0, G1, and G2 be pairwise disjoint graphs. The graph G =
Amalg(G0;G0 + G1,G0 + G2) is called a join-page amalgamation of G1, G2

along G0. Note that G is isomorphic to G0+ (G1 ∪G2).

Definitions 1.2 and 1.3 can be extended for more than two graphs G1, G2. The
λ-numbers of the union and join of graphs are well known as stated in the next
two results.
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Result 1.4 [Chang and Kuo 1996, Lemma 3.1]. For any two graphs G and H ,
λ(G ∪ H)=max{λ(G), λ(H)}.

Result 1.5 [Georges et al. 1994, Corollary 4.6]. For any two graphs G and H with
nG and nH vertices respectively,

λ(G+ H)=max{nG − 1, λ(G)}+max{nH − 1, λ(H)}+ 2.

In Section 2, we provide the exact λ-number for all join-page amalgamations.
Motivated by a connection between this λ-number and the minimum span over
injective L(2, 1)-labelings, Section 3 revisits these labelings for general graphs
which were first introduced in [Chang and Kuo 1996]. More specifically, we
establish a new exact relationship between the λ-number of a graph and the minimum
span over all injective L(2, 1)-labelings of this graph.

2. The λ-number of join-page amalgamations

Theorem 2.1. Let G = Amalg(G0;G0 +G1,G0 +G2, . . . ,G0 +G p) be a join-
page amalgamation, where Gi is a graph with ni ≥ 1 vertices for i = 0, 1, . . . , p≥ 2
so that n1 ≥ n j for j = 2, 3, . . . , p, and let n = n1+ n2+ · · ·+ n p. Then,

λ(G)=max{n0− 1, λ(G0)}+max{n− 1, λ(G1)}+ 2.

Proof. Since G is isomorphic to G0+(G1∪G2∪· · ·∪G p), using Results 1.4 and 1.5,

λ(G)= λ(G0+ (G1 ∪G2 ∪ · · · ∪G p))

=max{n0− 1, λ(G0)}+max{n− 1, λ(G1 ∪G2 ∪ · · · ∪G p)}+ 2

=max{n0− 1, λ(G0)}+max{n− 1, λ(G1), λ(G2), . . . , λ(G p)}+ 2.

For i = 2, 3, . . . , p, we have λ(Gi )≤ λ(Kni )= 2ni − 2≤ n1+ ni − 2< n− 1,
where Kni denotes the complete graph with ni vertices, and therefore

max{n− 1, λ(G1), λ(G2), . . . , λ(G p)} =max{n− 1, λ(G1)},

and the desired result follows. �

It is worth noting that Theorem 2.1 implies that λ(G) depends on the number of
vertices in G2,G3, . . . ,G p but not on their particular λ-numbers.

The following corollary is equivalent to Theorem 2.3 in [Adams et al. 2013] but
with an alternative and more compact proof.

Corollary 2.2. Let G = Amalg(K0; K0+ K1, K0+ K2, . . . , K0+ K p) be a join-
page amalgamation, where Ki is the complete graph with ni ≥ 1 vertices for
i = 0, 1, . . . , p ≥ 2 so that n1≥n j for j=2, 3, . . . , p, and let n=n1+n2+· · ·+n p.
Then λ(G)= 2n0+max{n− 1, 2n1− 2}.
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Proof. By Theorem 2.1,

λ(G)=max{n0− 1, λ(K0)}+max{n− 1, λ(K1)}+ 2

=max{n0− 1, 2n0− 2}+max{n− 1, 2n1− 2}+ 2

= 2n0− 2+max{n− 1, 2n1− 2}+ 2

= 2n0+max{n− 1, 2n1− 2}. �

3. A connection between join-page amalgamation and injective
L(2, 1)-labelings

When examining the L(2, 1)-labelings of a join-page amalgamation of the form
G = Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p), as described in Theorem 2.1
in Section 2, we noticed that we could extend an injective L(2, 1)-labeling of G0

of minimum span over all its injective labelings to a λ(G)-L(2, 1)-labeling of the
entire G. We suspected that this was not a coincidence, which led us to revisit the
following variation of L(2, 1)-labelings introduced in [Chang and Kuo 1996].

Definition 3.1. An L ′(2, 1)-labeling of a graph G is an injective L(2, 1)-labeling
of G. The definitions of k-L ′(2, 1)-labeling, λ′-number and λ′(G) are analogous
to those of k-L(2, 1)-labeling, λ-number, and λ(G) when restricted to injective
labelings.

The following basic properties were previously known.

Result 3.2 [Chang and Kuo 1996, Lemmas 2.1, 2.2, 2.3]. For any graph G with
nG vertices,

(i) λ′(H)≤ λ′(G) for any subgraph H of G;

(ii) λ(G)≤ λ′(G) with equality if G has diameter at most two; and

(iii) c(G) = λ′(Gc)− nG + 2, where c(G) is the path covering number of G, i.e.,
the smallest number of vertex-disjoint paths needed to cover all the vertices of
the graph G, and Gc is the complement of G.

In Theorem 3.4, we will strengthen Result 3.2(ii) by providing a surprisingly
simple exact relationship between λ(G) and λ′(G) for any graph G. We will be
using the following auxiliary result in the proof of Theorem 3.4.

Result 3.3 [Georges et al. 1994, Theorem 1.1]. For any graph G on nG vertices,

(i) λ(G)≤ nG − 1 if and only if c(Gc)= 1; and

(ii) λ(G)= nG + c(Gc)− 2 if and only if c(Gc)≥ 2.

Theorem 3.4. For any graph G with nG vertices,

λ′(G)=max{nG − 1, λ(G)}.
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Proof. Suppose λ(G) ≤ nG − 1. By Result 3.3(i), c(Gc) = 1, and Result 3.2(iii)
implies 1= c(Gc)= λ′(G)− nG + 2. Therefore,

λ′(G)= nG − 1=max{nG − 1, λ(G)}.

Assume, on the other hand, that λ(G) > nG − 1. Item (i) in Result 3.3 implies
c(Gc)≥ 2, and item (ii) implies λ(G)= nG + c(Gc)− 2, or equivalently, c(Gc)=

λ(G)− nG + 2. Finally, Result 3.2(iii) implies

λ′(G)= c(Gc)+ nG − 2

= (λ(G)− nG + 2)+ nG − 2= λ(G)=max{nG − 1, λ(G)}. �

In view of Theorem 3.4, the general problem of determining the λ′-number
of graphs is as complex as determining their λ-numbers, which, as mentioned
previously, is known to be an NP-hard problem. Furthermore, the exact λ′-numbers
of families of graphs, such as the ones derived in [Chang and Kuo 1996] using
more involved techniques (e.g., paths, cycles, union and join of two graphs), can be
readily obtained using Theorem 3.4 and the vast list of known exact λ-numbers in
the L(2, 1)-labeling literature.

If G =Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p) and we apply Theorem 3.4
to G0 in Theorem 2.1, we obtain a relationship between λ(G) and λ′(G0), confirm-
ing the connection between injective L(2, 1)-labelings of G0 and L(2, 1)-labelings
of G we mentioned in the first paragraph of this section. The following corollary
provides this relationship.

Corollary 3.5. Let G = Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p) be a join-
page amalgamation, where Gi is a graph with ni vertices for i = 0, 1, . . . , p ≥ 2
so that n1 ≥ n j for j = 2, 3, . . . , p, and let n = n1+ n2+ · · ·+ n p. Then λ(G)=
λ′(G0)+max{n− 1, λ(G1)}+ 2.
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