\bullet
 in Olve a journal of mathematics

On distance labelings of amalgamations and injective labelings of general graphs

Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell and Junjie Zhu

On distance labelings of amalgamations and injective labelings of general graphs

Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell and Junjie Zhu (Communicated by Jerrold Griggs)

Abstract

An $L(2,1)$-labeling of a graph G is a function assigning a nonnegative integer to each vertex such that adjacent vertices are labeled with integers differing by at least 2 and vertices at distance two are labeled with integers differing by at least 1. The minimum span across all $L(2,1)$-labelings of G is denoted $\lambda(G)$. An $L^{\prime}(2,1)$-labeling of G and the number $\lambda^{\prime}(G)$ are defined analogously, with the additional restriction that the labelings must be injective. We determine $\lambda(H)$ when H is a join-page amalgamation of graphs, which is defined as follows: given $p \geq 2, H$ is obtained from the pairwise disjoint union of graphs $H_{0}, H_{1}, \ldots, H_{p}$ by adding all the edges between a vertex in H_{0} and a vertex in H_{i} for $i=1,2, \ldots, p$. Motivated by these join-page amalgamations and the partial relationships between $\lambda(G)$ and $\lambda^{\prime}(G)$ for general graphs G provided by Chang and Kuo, we go on to show that $\lambda^{\prime}(G)=\max \left\{n_{G}-1, \lambda(G)\right\}$, where n_{G} is the number of vertices in G.

1. Introduction

In a well-studied model of the classic channel assignment problem introduced in [Hale 1980], each vertex of a graph G represents a transmitter in a communications network, and edges connect vertices corresponding to transmitters operating in close proximity which must receive sufficiently different frequencies to avoid interference. In a simplified instance of the problem, a frequency assignment is represented by an $L(2,1)$-labeling of G, which is a function f from the vertex set to the nonnegative integers such that $|f(x)-f(y)| \geq 2$ if vertices x and y are adjacent and $|f(x)-f(y)| \geq 1$ if x and y are at distance two. $L(2,1)$-labelings and their variations have been studied extensively since their introduction in [Griggs and Yeh 1992] (see the surveys [Calamoneri 2011; Griggs and Král 2009; Yeh 2006]) and continue to generate a rich literature to this date (see a sample of the

[^0]most recent works in [Calamoneri 2013; Franks 2015; Karst et al. 2015; Li and Zhou 2013; Lin and Dai 2015; Lu and Zhou 2013; Shao and Solis-Oba 2013]).

An $L(2,1)$-labeling of a graph G that uses labels in the set $\{0,1, \ldots, k\}$ will be called a k - $L(2,1)$-labeling. The minimum k so that G has a $k-L(2,1)$-labeling is called the λ-number of G, denoted by $\lambda(G)$. Griggs and Yeh [1992] conjectured that $\lambda(G) \leq \Delta^{2}(G)$, where $\Delta(G)$ denotes the maximum degree of G. This conjecture holds for $\Delta(G) \geq 10^{69}$ [Havet et al. 2012], but it remains open even when $\Delta(G)=3$. The best general upper bound yet established is $\lambda(G) \leq$ $\Delta^{2}(G)+\Delta(G)-2$ [Gonçalves 2008]. Recently, it has been proven that this conjecture also holds for small enough graphs, namely, graphs with at most $(\lfloor\Delta(G) / 2\rfloor+1)\left(\Delta^{2}(G)-\Delta(G)+1\right)-1$ vertices [Franks 2015]. As the general problem of determining $\lambda(G)$ is NP-hard [Georges et al. 1994], a significant body of literature has focused on finding bounds or exact λ-numbers for particular classes of graphs. In particular, [Adams et al. 2013] focused on the amalgamations of graphs.

Definition 1.1. Let $H_{1}, H_{2}, \ldots, H_{p}$ be $p \geq 2$ graphs each containing a fixed induced subgraph isomorphic to a graph H_{0}. The amalgamation of $H_{1}, H_{2}, \ldots, H_{p}$ along H_{0} is the simple graph $H=\operatorname{Amalg}\left(H_{0} ; H_{1}, H_{2}, \ldots, H_{p}\right)$ obtained by identifying $H_{1}, H_{2}, \ldots, H_{p}$ at the vertices in the fixed subgraphs isomorphic to H_{0} in each $H_{1}, H_{2}, \ldots, H_{p}$ respectively. H_{0} is referred to as the spine and H_{k} as the k-th page of the amalgamation for $k=1,2, \ldots, p$. (We refer the reader to [Adams et al. 2013] for some concrete examples.)

In [Adams et al. 2013], upper bounds for the λ-number of the amalgamation of graphs along a given graph were established by determining the exact λ-number of amalgamations of complete graphs along a complete graph. They also provided the exact λ-numbers of amalgamations of rectangular grids along a path, or more specifically, of the Cartesian products of a path and a star with spokes of arbitrary lengths. This focus on the Cartesian products motivated us to investigate amalgamations of the join of graphs.

Definition 1.2. Let G_{1} and G_{2} be two disjoint graphs. The union $G_{1} \cup G_{2}$ is the graph with vertex (resp., edge) set equal to the union of the vertex (resp., edge) sets of G_{1} and G_{2}. The join $G_{1}+G_{2}$ is obtained from $G_{1} \cup G_{2}$ by adding an edge between each vertex in G_{1} and each vertex in G_{2}.

Definition 1.3. Let G_{0}, G_{1}, and G_{2} be pairwise disjoint graphs. The graph $G=$ $\operatorname{Amalg}\left(G_{0} ; G_{0}+G_{1}, G_{0}+G_{2}\right)$ is called a join-page amalgamation of G_{1}, G_{2} along G_{0}. Note that G is isomorphic to $G_{0}+\left(G_{1} \cup G_{2}\right)$.

Definitions 1.2 and 1.3 can be extended for more than two graphs G_{1}, G_{2}. The λ-numbers of the union and join of graphs are well known as stated in the next two results.

Result 1.4 [Chang and Kuo 1996, Lemma 3.1]. For any two graphs G and H, $\lambda(G \cup H)=\max \{\lambda(G), \lambda(H)\}$.

Result 1.5 [Georges et al. 1994, Corollary 4.6]. For any two graphs G and H with n_{G} and n_{H} vertices respectively,

$$
\lambda(G+H)=\max \left\{n_{G}-1, \lambda(G)\right\}+\max \left\{n_{H}-1, \lambda(H)\right\}+2 .
$$

In Section 2, we provide the exact λ-number for all join-page amalgamations. Motivated by a connection between this λ-number and the minimum span over injective $L(2,1)$-labelings, Section 3 revisits these labelings for general graphs which were first introduced in [Chang and Kuo 1996]. More specifically, we establish a new exact relationship between the λ-number of a graph and the minimum span over all injective $L(2,1)$-labelings of this graph.

2. The λ-number of join-page amalgamations

Theorem 2.1. Let $G=\operatorname{Amalg}\left(G_{0} ; G_{0}+G_{1}, G_{0}+G_{2}, \ldots, G_{0}+G_{p}\right)$ be a joinpage amalgamation, where G_{i} is a graph with $n_{i} \geq 1$ vertices for $i=0,1, \ldots, p \geq 2$ so that $n_{1} \geq n_{j}$ for $j=2,3, \ldots, p$, and let $n=n_{1}+n_{2}+\cdots+n_{p}$. Then,

$$
\lambda(G)=\max \left\{n_{0}-1, \lambda\left(G_{0}\right)\right\}+\max \left\{n-1, \lambda\left(G_{1}\right)\right\}+2
$$

Proof. Since G is isomorphic to $G_{0}+\left(G_{1} \cup G_{2} \cup \cdots \cup G_{p}\right)$, using Results 1.4 and 1.5,

$$
\begin{aligned}
\lambda(G) & =\lambda\left(G_{0}+\left(G_{1} \cup G_{2} \cup \cdots \cup G_{p}\right)\right) \\
& =\max \left\{n_{0}-1, \lambda\left(G_{0}\right)\right\}+\max \left\{n-1, \lambda\left(G_{1} \cup G_{2} \cup \cdots \cup G_{p}\right)\right\}+2 \\
& =\max \left\{n_{0}-1, \lambda\left(G_{0}\right)\right\}+\max \left\{n-1, \lambda\left(G_{1}\right), \lambda\left(G_{2}\right), \ldots, \lambda\left(G_{p}\right)\right\}+2
\end{aligned}
$$

For $i=2,3, \ldots, p$, we have $\lambda\left(G_{i}\right) \leq \lambda\left(K_{n_{i}}\right)=2 n_{i}-2 \leq n_{1}+n_{i}-2<n-1$, where $K_{n_{i}}$ denotes the complete graph with n_{i} vertices, and therefore

$$
\max \left\{n-1, \lambda\left(G_{1}\right), \lambda\left(G_{2}\right), \ldots, \lambda\left(G_{p}\right)\right\}=\max \left\{n-1, \lambda\left(G_{1}\right)\right\}
$$

and the desired result follows.
It is worth noting that Theorem 2.1 implies that $\lambda(G)$ depends on the number of vertices in $G_{2}, G_{3}, \ldots, G_{p}$ but not on their particular λ-numbers.

The following corollary is equivalent to Theorem 2.3 in [Adams et al. 2013] but with an alternative and more compact proof.

Corollary 2.2. Let $G=\operatorname{Amalg}\left(K_{0} ; K_{0}+K_{1}, K_{0}+K_{2}, \ldots, K_{0}+K_{p}\right)$ be a joinpage amalgamation, where K_{i} is the complete graph with $n_{i} \geq 1$ vertices for $i=0,1, \ldots, p \geq 2$ so that $n_{1} \geq n_{j}$ for $j=2,3, \ldots, p$, and let $n=n_{1}+n_{2}+\cdots+n_{p}$. Then $\lambda(G)=2 n_{0}+\max \left\{n-1,2 n_{1}-2\right\}$.

Proof. By Theorem 2.1,

$$
\begin{aligned}
\lambda(G) & =\max \left\{n_{0}-1, \lambda\left(K_{0}\right)\right\}+\max \left\{n-1, \lambda\left(K_{1}\right)\right\}+2 \\
& =\max \left\{n_{0}-1,2 n_{0}-2\right\}+\max \left\{n-1,2 n_{1}-2\right\}+2 \\
& =2 n_{0}-2+\max \left\{n-1,2 n_{1}-2\right\}+2 \\
& =2 n_{0}+\max \left\{n-1,2 n_{1}-2\right\} .
\end{aligned}
$$

3. A connection between join-page amalgamation and injective $L(2,1)$-labelings

When examining the $L(2,1)$-labelings of a join-page amalgamation of the form $G=\operatorname{Amalg}\left(G_{0} ; G_{0}+G_{1}, G_{0}+G_{2}, \ldots, G_{0}+G_{p}\right)$, as described in Theorem 2.1 in Section 2, we noticed that we could extend an injective $L(2,1)$-labeling of G_{0} of minimum span over all its injective labelings to a $\lambda(G)-L(2,1)$-labeling of the entire G. We suspected that this was not a coincidence, which led us to revisit the following variation of $L(2,1)$-labelings introduced in [Chang and Kuo 1996].

Definition 3.1. An $L^{\prime}(2,1)$-labeling of a graph G is an injective $L(2,1)$-labeling of G. The definitions of k - $L^{\prime}(2,1)$-labeling, λ^{\prime}-number and $\lambda^{\prime}(G)$ are analogous to those of k-L $(2,1)$-labeling, λ-number, and $\lambda(G)$ when restricted to injective labelings.

The following basic properties were previously known.
Result 3.2 [Chang and Kuo 1996, Lemmas 2.1, 2.2, 2.3]. For any graph G with n_{G} vertices,
(i) $\lambda^{\prime}(H) \leq \lambda^{\prime}(G)$ for any subgraph H of G;
(ii) $\lambda(G) \leq \lambda^{\prime}(G)$ with equality if G has diameter at most two; and
(iii) $c(G)=\lambda^{\prime}\left(G^{c}\right)-n_{G}+2$, where $c(G)$ is the path covering number of G, i.e., the smallest number of vertex-disjoint paths needed to cover all the vertices of the graph G, and G^{c} is the complement of G.

In Theorem 3.4, we will strengthen Result 3.2(ii) by providing a surprisingly simple exact relationship between $\lambda(G)$ and $\lambda^{\prime}(G)$ for any graph G. We will be using the following auxiliary result in the proof of Theorem 3.4.

Result 3.3 [Georges et al. 1994, Theorem 1.1]. For any graph G on n_{G} vertices,
(i) $\lambda(G) \leq n_{G}-1$ if and only if $c\left(G^{c}\right)=1$; and
(ii) $\lambda(G)=n_{G}+c\left(G^{c}\right)-2$ if and only if $c\left(G^{c}\right) \geq 2$.

Theorem 3.4. For any graph G with n_{G} vertices,

$$
\lambda^{\prime}(G)=\max \left\{n_{G}-1, \lambda(G)\right\}
$$

Proof. Suppose $\lambda(G) \leq n_{G}-1$. By Result 3.3(i), $c\left(G^{c}\right)=1$, and Result 3.2(iii) implies $1=c\left(G^{c}\right)=\lambda^{\prime}(G)-n_{G}+2$. Therefore,

$$
\lambda^{\prime}(G)=n_{G}-1=\max \left\{n_{G}-1, \lambda(G)\right\} .
$$

Assume, on the other hand, that $\lambda(G)>n_{G}-1$. Item (i) in Result 3.3 implies $c\left(G^{c}\right) \geq 2$, and item (ii) implies $\lambda(G)=n_{G}+c\left(G^{c}\right)-2$, or equivalently, $c\left(G^{c}\right)=$ $\lambda(G)-n_{G}+2$. Finally, Result 3.2(iii) implies

$$
\begin{aligned}
\lambda^{\prime}(G) & =c\left(G^{c}\right)+n_{G}-2 \\
& =\left(\lambda(G)-n_{G}+2\right)+n_{G}-2=\lambda(G)=\max \left\{n_{G}-1, \lambda(G)\right\} .
\end{aligned}
$$

In view of Theorem 3.4, the general problem of determining the λ^{\prime}-number of graphs is as complex as determining their λ-numbers, which, as mentioned previously, is known to be an NP-hard problem. Furthermore, the exact λ^{\prime}-numbers of families of graphs, such as the ones derived in [Chang and Kuo 1996] using more involved techniques (e.g., paths, cycles, union and join of two graphs), can be readily obtained using Theorem 3.4 and the vast list of known exact λ-numbers in the $L(2,1)$-labeling literature.

If $G=\operatorname{Amalg}\left(G_{0} ; G_{0}+G_{1}, G_{0}+G_{2}, \ldots, G_{0}+G_{p}\right)$ and we apply Theorem 3.4 to G_{0} in Theorem 2.1, we obtain a relationship between $\lambda(G)$ and $\lambda^{\prime}\left(G_{0}\right)$, confirming the connection between injective $L(2,1)$-labelings of G_{0} and $L(2,1)$-labelings of G we mentioned in the first paragraph of this section. The following corollary provides this relationship.
Corollary 3.5. Let $G=\operatorname{Amalg}\left(G_{0} ; G_{0}+G_{1}, G_{0}+G_{2}, \ldots, G_{0}+G_{p}\right)$ be a joinpage amalgamation, where G_{i} is a graph with n_{i} vertices for $i=0,1, \ldots, p \geq 2$ so that $n_{1} \geq n_{j}$ for $j=2,3, \ldots, p$, and let $n=n_{1}+n_{2}+\cdots+n_{p}$. Then $\lambda(G)=$ $\lambda^{\prime}\left(G_{0}\right)+\max \left\{n-1, \lambda\left(G_{1}\right)\right\}+2$.

Acknowledgements

The authors would like to thank Sarah Spence Adams for handling administrative requirements regarding student research credits. Denise Sakai Troxell would like to thank Babson College for its support through the Babson Research Scholar award.

References

[Adams et al. 2013] S. S. Adams, N. Howell, N. Karst, D. S. Troxell, and J. Zhu, "On the $L(2,1)-$ labelings of amalgamations of graphs", Discrete Appl. Math. 161:7-8 (2013), 881-888. MR 3030574 Zbl 1263.05086
[Calamoneri 2011] T. Calamoneri, "The $\mathrm{L}(h, k)$-labelling problem: An updated survey and annotated bibliography", Comput. J. 54:8 (2011), 1344-1371.
[Calamoneri 2013] T. Calamoneri, "Optimal $L\left(\delta_{1}, \delta_{2}, 1\right)$-labeling of eight-regular grids", Inform. Process. Lett. 113:10-11 (2013), 361-364. MR 3037462 Zbl 06329871
[Chang and Kuo 1996] G. J. Chang and D. Kuo, "The $L(2,1)$-labeling problem on graphs", SIAM J. Discrete Math. 9:2 (1996), 309-316. MR 97b:05132 Zbl 0860.05064
[Franks 2015] C. Franks, "The delta square conjecture holds for graphs of small order", Involve: J. Math. 9:2 (2015), to be supplied by the publisher.
[Georges et al. 1994] J. P. Georges, D. W. Mauro, and M. A. Whittlesey, "Relating path coverings to vertex labellings with a condition at distance two", Discrete Math. 135:1-3 (1994), 103-111. MR 96b:05150 Zbl 0811.05058
[Gonçalves 2008] D. Gonçalves, "On the $L(p, 1)$-labelling of graphs", Discrete Math. 308:8 (2008), 1405-1414. MR 2008k:05185 Zbl 1135.05065
[Griggs and Král 2009] J. R. Griggs and D. Král, "Graph labellings with variable weights, a survey", Discrete Appl. Math. 157:12 (2009), 2646-2658. MR 2010m:05275 Zbl 1211.05145
[Griggs and Yeh 1992] J. R. Griggs and R. K. Yeh, "Labelling graphs with a condition at distance 2", SIAM J. Discrete Math. 5:4 (1992), 586-595. MR 93h:05141 Zbl 0767.05080
[Hale 1980] W. K. Hale, "Frequency assignment: Theory and applications", Proc. IEEE 68:12 (1980), 1497-1514.
[Havet et al. 2012] F. Havet, B. Reed, and J.-S. Sereni, "Griggs and Yeh's conjecture and $L(p, 1)$ labelings", SIAM J. Discrete Math. 26:1 (2012), 145-168. MR 2902638 Zbl 1245.05110
[Karst et al. 2015] N. Karst, J. Oehrlein, D. S. Troxell, and J. Zhu, "L(d,1)-labelings of the edge-pathreplacement by factorization of graphs", J. Comb. Opt. 30:1 (2015), 34-41. MR 3352872
[Li and Zhou 2013] X. Li and S. Zhou, "Labeling outerplanar graphs with maximum degree three", Discrete Appl. Math. 161:1-2 (2013), 200-211. MR 2973362 Zbl 06109944
[Lin and Dai 2015] W. Lin and B. Dai, "On (s, t)-relaxed $L(2,1)$-labelings of the triangular lattice", J. Comb. Optim. 29:3 (2015), 655-669. MR 3316710 Zbl 06435135
[Lu and Zhou 2013] C. Lu and Q. Zhou, "Path covering number and $L(2,1)$-labeling number of graphs", Discrete Appl. Math. 161:13-14 (2013), 2062-2074. MR 3057011 Zbl 1286.05150
[Shao and Solis-Oba 2013] Z. Shao and R. Solis-Oba, " $L(2,1)$-labelings on the modular product of two graphs", Theoret. Comput. Sci. 487 (2013), 74-81. MR 3049272 Zbl 1283.05246
[Yeh 2006] R. K. Yeh, "A survey on labeling graphs with a condition at distance two", Discrete Math. 306:12 (2006), 1217-1231. MR 2007g:05167 Zbl 1094.05047

Received: 2014-02-03 Revised: 2014-05-24 Accepted: 2014-05-31
nkarst@babson.edu Mathematics and Sciences Division, Babson College, Babson Park, MA 02457, United States
jessica.oehrlein@students.olin.edu
troxell@babson.edu
jjzhu@stanford.edu
Franklin W. Olin College of Engineering, Olin Way, Needham, MA 02492, United States

Mathematics and Sciences Division, Babson College, Babson Park, MA 02457, United States

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 3

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1(\bmod m)$ 361 Matt Delong, Matthew Russell and Jonathan Schrock
Parameter identification and sensitivity analysis to a thermal diffusivity inverse problem
Brian Leventhal, Xiaojing Fu, Kathleen Fowler and Owen ESLINGER385
A mathematical model for the emergence of HIV drug resistance during periodic401
bang-bang type antiretroviral treatmentNicoleta Tarfulea and Paul Read
An extension of Young's segregation game421
Michael Borchert, Mark Burek, Rick Gillman and Spencer RoachEmbedding groups into distributive subsets of the monoid of binary operations433
Gregory Mezera
Persistence: a digit problem 439
Stephanie Perez and Robert Styer
A new partial ordering of knots 447
Arazelle Mendoza, Tara Sargent, John Travis Shrontz and PaulDrube
Two-parameter taxicab trigonometric functions 467
Kelly Delp and Michael Filipski
${ }_{3} F_{2}$-hypergeometric functions and supersingular elliptic curves 481
Sarah Pitman
A contribution to the connections between Fibonacci numbers and matrix theory 491Miriam Farber and Abraham Berman
Stick numbers in the simple hexagonal lattice503
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McLoud-Mann, Elise McMahon, Sara Melvin and GeoffreySchuette
On the number of pairwise touching simplices 513
Bas Lemmens and Christopher Parsons
The zipper foldings of the diamond521
Erin W. Chambers, Di Fang, Kyle A. Sykes, Cynthia M. Traub andPhilip Trettenero
On distance labelings of amalgamations and injective labelings of general graphs 535Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell andJunjie Zhu

[^0]: MSC2010: primary 68R10, 94C15; secondary 05C15, 05C78.
 Keywords: $L(2,1)$-labeling, distance two labeling, injective $L(2,1)$-labeling, amalgamation of graphs, channel assignment problem.

