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a b s t r a c t

Given a positive integer d, an L(d, 1)-labeling of a graph G is an assignment of nonnegative
integers to its vertices such that adjacent vertices must receive integers at least d apart,
and vertices at distance twomust receive integers at least one apart. The λd-number of G is
the minimum k so that G has an L(d, 1)-labeling using labels in {0, 1, . . . , k}. Informally, an
amalgamation of two disjoint graphs G1 and G2 along a fixed graph G0 is the simple graph
obtained by identifying the vertices of two induced subgraphs isomorphic to G0, one in G1
and the other inG2. A flower is an amalgamation of two ormore cycles along a single vertex.
We provide the exact λ2-number of a generalized flower which is the Cartesian product of
a path Pn and a flower, or equivalently, an amalgamation of cylindrical rectangular grids
along a certain Pn. In the process, we provide general upper bounds for the λd-number of
the Cartesian product of Pn and any graph G, using circular L(d+1, 1)-labelings of Gwhere
the labels {0, 1, . . . , k} are arranged sequentially in a circle and the distance between two
labels is the shortest distance on the circle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An L(2, 1)-labeling of a graph G is a function f : V (G) → {0, 1, . . . , k} such that if vertices u and v are adjacent, then
|f (u) − f (v)| ≥ 2, and if u and v are at distance two, then |f (u) − f (v)| ≥ 1. An L(2, 1)-labeling that uses labels in the set
{0, 1, . . . , k} will be called a k-labeling of G. The minimum k so that G has a k-labeling will be called the λ-number of G and
denoted by λ(G). The study of L(2, 1)-labelings and their variations is motivated by the channel assignment problem [11]
and has generated a vast literature since L(2, 1)-labelings were first introduced in 1992 [10]. We refer the reader to the
surveys in [2,28] for an overview and to [3–5,15,16,20,21,23,25,29] for some of the more recent developments in the field.

The long-standing conjecture in the field states that λ(G) ≤ ∆2(G), where ∆(G) denotes the maximum degree of
G [10]. This conjecture holds for graphs with ∆(G) larger than approximately 1069 [12] and for graphs with at most
(⌊∆(G)/2⌋+ 1)(∆2(G)−∆(G)+ 1)− 1 vertices [5]. The best known general upper bound is λ(G) ≤ ∆2(G)+∆(G)− 2 [9].
Even though the problem of determining λ(G) is NP-hard [8], several bounds and exact λ-numbers for different families of
graphs are known. One of these families is the class of amalgamations of graphs studied in [1].

Let G1,G2, . . . ,Gp be p ≥ 2 pairwise disjoint graphs each containing a fixed induced subgraph isomorphic to a graph
G0. The amalgamation of G1,G2, . . . ,Gp along G0 is the simple graph G = Amalg(G0;G1,G2, . . . ,Gp) obtained by identifying
G1,G2, . . . ,Gp at the vertices in the fixed subgraphs isomorphic to G0 in each G1,G2, . . . ,Gp, respectively. In [1], general
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(a) Amalg(K3; K6, K5, K4). (b) Amalg(P3; P3 � P4,
P3 � P3, P3 � P2).

(c) Amalg(K3; K3 � K4, K3 � K3, K3 � K2). (d) Amalg(P3; P3 � C4,

P3 � C3, P3 � C3).

Fig. 1.1. Examples1 of Amalg(G0;G1,G2, . . . ,Gp) where the white vertices are in G0 .

upper bounds for the λ-number of the amalgamation of graphs were established by determining the exact λ-number of the
amalgamation of complete graphs along a complete graph (see Fig. 1.1(a)). They also provided the exact λ-numbers of the
amalgamation of rectangular grids (i.e., of Cartesian products of two paths) along a certain path, or more specifically, of the
Cartesian product of a path and a star with spokes of arbitrary lengths (see Fig. 1.1(b)).

Recall that the Cartesian product of two disjoint graphsH1 andH2, denoted byH1 �H2, is defined as the graphwith vertex
set given by the Cartesian product of the vertex set of H1 and the vertex set of H2, where two vertices (u, v) and (w, z) are
adjacent if and only if either (u, w are adjacent in H1 and v = z) or (v, z are adjacent in H2 and u = w). The λ-numbers of
the Cartesian products of graphs as simple as paths Pn, cycles Cn, and complete graphs Kn (where n is the number of vertices
in the respective graphs), have been extensively investigated in the literature, often generating challenging problems, some
of them still open to date. For a sample of related works, we refer the reader to [7,14,17,18,24,26].

Expanding upon other amalgamations of Cartesian products of graphs, [15] provided a tight upper bound for the
λ-number of amalgamations of Cartesian products of two complete graphs along a complete graph (see Fig. 1.1(c)) and
the exact λ-numbers for certain infinite subclasses of amalgamations of this form. The complete determination of this
λ-number may be out of reach as indicated in [15] due to a surprising relationship between this problem and the NP-hard
minimummakespan scheduling problem [6].

In this work, we will focus on the amalgamation G of cylindrical rectangular grids (i.e., of Cartesian products of a path
and a cycle) along a fixed path, or more formally, for given integers n ≥ 1, p ≥ 2, and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp,G =

Amalg(G0;G1,G2, . . . ,Gp) with G0 = Pn and Gℓ = Pn � Cmℓ
for ℓ = 1, 2, . . . , p. We will call G a generalized flower and

denote it by Fn(m1,m2, . . . ,mp) (see F3(3, 3, 4) in Fig. 1.1(d)). When n = 1, a generalized flower is the amalgamation of
cycles along a single vertex which we will simply call a flower for the obvious resemblance to its counterpart in nature. We
extend this metaphor to all the generalized flowers and refer to the graph G0 = Pn as the stem, and the graph Gℓ = Pn � Cmℓ

as petal ℓ, for ℓ = 1, 2, . . . , p. Our ultimate goal will be to show the following:

Theorem 1.1. Let n ≥ 1, p ≥ 2, 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = Fn(m1,m2, . . . ,mp). Then

λ(G) = 2p + 1, if n = 1;
= 2p + 2, if (n = 2 and p > 2) or

(n = 2, p = 2, (m1,m2) ∉ {(4, 4), (4, 8)}, and {m1,m2} ∩ {3, 6} = ∅);

= 2p + 4, if (n = 3, p = 2, and (m1,m2) ∈ {(3, 3), (3, 5)}) or
(n = 4, p = 2, and (m1,m2) ∈ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5)});

= 2p + 4, if n ≥ 5;
= 2p + 3, otherwise.

The following two well-known generalizations of L(2, 1)-labelings will be used in Section 2. Let d and k be integers such
that d ≥ 1 and k ≥ 0. An L(d, 1)-labeling of a graph G is a function f : V (G) → {0, 1, . . . , k} such that if vertices u and v are
adjacent, then |f (u)−f (v)| ≥ d, and if u and v are at distance two, then |f (u)−f (v)| ≥ 1. An L(d, 1)-labeling that uses labels
in the set {0, 1, . . . , k} will be called a (k, d)-labeling of G. The minimum k so that G has a (k, d)-labeling will be called the
λd-number of G and denoted by λd(G). A k-circular L(d, 1)-labeling of a graph G is a function f : V (G) → {0, 1, . . . , k} such
that if vertices u and v are adjacent, then ∥f (u) − f (v)∥k ≥ d, and if u and v are at distance two, then ∥f (u) − f (v)∥k ≥ 1,
where ∥x∥k = min{|x|, (k + 1) − |x|}. (Note: The traditional definition of a k-circular L(d, 1)-labeling of G in the literature
maps V (G) into {0, 1, . . . , k − 1} but we chose to adapt it to be compatible with the definition of a (k, d)-labeling which
maps V (G) into {0, 1, . . . , k}.) Formore on this labeling variation, we refer the interested reader to [13,19,22,27]. It is helpful
to label the vertices of Ck+1 clockwise around the cycle with 0, 1, . . . , k, and interpret ∥x− y∥k, called the k-circular distance

1 Fig. 1.1(a) and (b) are from [1], and (c) is from [15].
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Fig. 2.1. (11, 2)-labeling of P4 � K4 constructed in the proof of Theorem 2.1.

between the labels x and y, as the shortest distance between x and y on the cycle. Note that a k-circular L(d, 1)-labeling is
also a (k, d′)-labeling for any positive integer d′

≤ d but the converse is not true in general.
In Section 2,weuse k-circular L(d+1, 1)-labelings to provide upper bounds for theλd-number of the Cartesianproducts of

a path and any graph. This result will be helpful in obtaining the general upper bound 2p+4 for the λ-number of generalized
flowers; this bound is exact when n ≥ 5. We would like to highlight that the strength of this result lies in the fact that it
provides a detailed framework to confirm the general upper bounds for the λ-number of the Cartesian products of two
paths [26], of a path and a cycle [14], and of a path and a star with spokes of arbitrary lengths [19]. These upper bounds were
originally found using methods that either did not use circular labelings or did not acknowledge their role in obtaining the
desired λ-labelings.

When determining the exact λ-numbers of families of graphs, the instances with smaller number of vertices are often
discussed separately as the proximity among vertices may require a more involved selection of labels in L(2, 1)-labelings
achieving the λ-numbers. This selection of labels may also be very sensitive to the structure of each particular instance,
adding to the complexity of the determination problem. Sections 3 through 5 discuss the smaller instances of generalized
flowers, namely when n ≤ 4. The λ-number of flowers, i.e., of generalized flowers with n = 1, is given in Section 3. The case
n = 2 is treated in Section 4, and the cases n = 3, 4 are treated in Section 5.

2. General upper bound for the λ-number of generalized flowers and an exact value when n ≥ 5

In Theorem 2.4, we exhibit a general upper bound for the λ-number of Fn(m1,m2, . . . ,mp) and use it in Corollary 2.6
to determine the exact λ-number when n ≥ 5. We first need to prove Theorem 2.1 and Corollary 2.2 that use circular
L(d + 1, 1)-labelings to derive an upper bound for the λd-number of the Cartesian product of a path and any graph.

Theorem 2.1. Let d and k be integers such that d ≥ 1 and k ≥ 2d. If a graph G has a k-circular L(d+ 1, 1)-labeling, then Pn �G
has a (k, d)-labeling.

Proof. Let u0, u1, . . . , un−1 be the vertices in Pn so that ui and ui+1 are adjacent for i = 0, 1, . . . , n − 2, and let
v0, v1, . . . , vm−1 be the vertices in G. Let g be a k-circular L(d + 1, 1)-labeling of G. We will construct a (k, d)-labeling f
of Pn �G as an n-by-mmatrix Awhere the entry Ai,j on the ith row, jth column will be the label f (ui, vj) of vertex (ui, vj) for
i = 0, 1, . . . , n−1 and j = 0, 1, . . . ,m−1. For each j = 0, 1, . . . ,m−1, set A0,j = g(vj) and Ai,j = (Ai−1,j +d)mod (k+1)
for i = 1, 2, . . . , n − 1. Fig. 2.1 illustrates this construction when d = 2, k = 11, n = 4, and G = K4, the complete graph on
4 vertices.

We make the following two claims:

(i) Each rowofA induces a k-circular L(d+1, 1)-labeling ofG if the jth label in the row is assigned to vj for j = 0, 1, . . . ,m−1.
This holds since the 0th row of A is g and each of the remaining rows is a circular shift of the 0th row by a multiple of
d (note that the k-circular distance between the labels assigned to an arbitrary pair of vertices in G remains constant
through these circular shifts). Consequently, each row of A induces a (k, d)-labeling of G.

(ii) Each column of A induces a k-circular L(d, 1)-labeling of Pn if the ith label in the column is assigned to ui for i =

0, 1, . . . , n − 1. To verify this statement, recall that k ≥ 2d and each entry in a column is obtained from the previous
one in the same column by adding d modulo k + 1. Hence, the k-circular distance between the labels assigned to two
adjacent vertices in Pn is exactly d (since d < (k + 1) − d). In addition, the labels assigned to two vertices at distance
two in Pn must be different (since one of these labels is obtained from the other by adding 2d modulo k + 1). Thus, the
k-circular distance between these labels is at least 1. As in item (i), we can finally conclude that each column of A induces
a (k, d)-labeling of Pn.

In view of these two claims, to conclude that f is a (k, d)-labeling of Pn �G, it is sufficient to show that if there exist two
adjacent vertices u and u′ in Pn and two adjacent vertices v and v′ in G, i.e., (u′, v) and (u, v′) are both adjacent to (u, v) in
Pn �G, then |f (u′, v) − f (u, v′)| ≥ 1. To simplify the notation, we call a = f (u′, v), b = f (u, v′), and c = f (u, v). By our
construction, we have ∥b − c∥k ≥ d + 1 since v and v′ are adjacent in G, and ∥a − c∥k = d since u and u′ are adjacent in Pn,
and would like to show that a ≠ b. If a = b, then ∥b− c∥k ≥ d+1 implies ∥a− c∥k ≥ d+1 which contradicts ∥a− c∥k = d.
Therefore a ≠ b as desired and we conclude that f is a (k, d)-labeling of Pn �G. �
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It is important to note that the k-circular requirement for the L(d + 1, 1)-labeling g of G in the proof of Theorem 2.1
is essential in guaranteeing that the final labeling is indeed a (k, d)-labeling of Pn �G. For example, if this requirement is
dropped when k = 8 and d = 2, then two adjacent vertices in G could be labeled 0 and 7, respectively. Adding d = 2
modulo k + 1 = 9 to each label, we obtain 2 and 0, respectively. This is not possible in an L(2, 1)-labeling, as there are
two vertices at distance two with the same label, namely 0. More generally, by dropping the k-circular requirement for the
L(d + 1, 1)-labeling, the pairs (i, k − j) for i = 0, 1, . . . , d − 1 and j = 0, 1, . . . , d − i − 1 would be possible pairs of labels
for two adjacent vertices in G, respectively, since k ≥ 2d implies (k − j) − i ≥ d + 1. Adding d modulo k + 1 to each label
in these pairs we would obtain the pairs (d + i, d − j − 1) for i = 0, 1, . . . , d − 1 and j = 0, 1, . . . , d − i − 1 assigned to
adjacent vertices in Pn �G. This is not possible in a (k, d)-labeling because if j < d − i − 1 then we will have two adjacent
vertices with labels differing by (d+ i) − (d− j− 1) ≤ d− 1, and if j = d− i− 1 we will have two vertices at distance two
with the same label i.

Theorem 2.1 confirms several of the known general upper bounds for the λ-number of Pn �G for different families of
graphs G. For example, it was shown in [19] that Pm has a 6-circular L(3, 1)-labeling, so Theorem 2.1 implies that there
exists a 6-labeling of Pn � Pm, confirming the upper bound λ(Pn � Pm) ≤ 6 found in [26]. Similarly, it was shown in [22]
that Cm has a 7-circular L(3, 1)-labeling and therefore there exists a 7-labeling of Pn � Cm confirming that λ(Pn � Cm) ≤ 7 as
shown in [14]. Also from [19], there exists a (q+4)-circular L(3, 1)-labeling of a tree T with one vertexwithmaximumdegree
q > 2 and all the other vertices with degree at most 2, and therefore there exists a (q + 4)-labeling of Pn � T confirming
that λ(Pn � T ) ≤ q + 4 as shown in [1]. We also have the following corollary that provides a general upper bound for the
λd-number of the Cartesian product of a path and any graph.

Corollary 2.2. If d is a positive integer, then λd(Pn �G) ≤ λd+1(G) + d for any graph G.

Proof. As observed in [13,22], we have that the minimum k so that G has a k-circular L(d + 1, 1)-labeling is at most
λd+1(G) + d, and therefore the desired inequality follows from Theorem 2.1. �

Before proceeding to the next results, we need to introduce some notation. Let G = Fn(m1,m2, . . . ,mp) be a generalized
flower where n ≥ 1, p ≥ 2, and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp. For each ℓ = 1, 2, . . . , p, the petal ℓ of G is isomorphic
to Pn � Cmℓ

so its vertices can be organized in an array format where each vertex will be represented by an ordered triple
(i, j, ℓ) with i = 0, 1, . . . , n − 1 and j = 0, 1, . . . ,mℓ − 1, where the 0th column contains the vertices in the stem Pn. Two
vertices are adjacent if their triple representations satisfy exactly one of the following two conditions:

(i) Both triples agree on the first and third coordinates, and differ in absolute value by 1 or by mℓ − 1 on the second
coordinate.

(ii) Both triples agree on the second and third coordinates, and differ in absolute value by 1 on the first coordinate.

For a fixed i = 0, 1, . . . , n−1, the subgraph ofG induced by the vertices (i, j, ℓ)with j = 0, 1, . . . ,mℓ−1 and ℓ = 1, 2, . . . , p
is isomorphic to F1(m1,m2, . . . ,mp) andwill be called the ith layer of G. If, in addition to fixing i, we also fix ℓ = 1, 2, . . . , p,
the subgraph of the ith layer of G induced by the vertices (i, j, ℓ) with j = 0, 1, . . . ,mℓ − 1 is isomorphic to Cmℓ

and will
be called the ith layer of petal ℓ. For convenience, the L(2, 1)-labelings of Fn(m1,m2, . . . ,mp) will be represented by the
n-by-mℓ matrices for ℓ = 1, 2, . . . , p, where the entry on the ith row, jth column of the ℓth matrix will be the label of vertex
(i, j, ℓ); observe that all the 0th columns of these pmatrices must be the same as they contain the labels for the stem Pn of G.

In the proof of Theorem 2.4, we will first treat the case Fn(3, 3) separately, and for each of the remaining generalized
flowers Fn(m1,m2, . . . ,mp), we will construct a (2p+ 4)-circular L(3, 1)-labeling of the 0th layer and then use Theorem 2.1
to obtain a (2p + 4)-labeling of the entire graph. In such a construction, we will need k-circular L(3, 1)-labelings of single
cycles Cm with m ≥ 4 satisfying the special properties stated in the following result.

Lemma 2.3. Let k and m be integers such that k ≥ 8 and m ≥ 4. For each x = 3, 4, . . . , k − 3, there exists a k-circular
L(3, 1)-labeling of Cm which assigns label 0 to an arbitrary vertex and labels x and x + 1 to the vertices adjacent to it.

Proof. Let v0, v1, . . . , vm−1 be the vertices in Cm so that vi and vi+1 are adjacent for i = 0, 1, . . . ,m−1 and subscript addition
is taken modulom. In Fig. 2.2 we exhibit the desired k-circular L(3, 1)-labelings of Cm as row-vectors of labels where the ith
entry in each vector contains the label of vertex vi for i = 0, 1, . . . ,m − 1. Each shaded block of three consecutive labels
within a vector is a k-circular L(3, 1)-labeling of C3 that can be replaced with q ≥ 1 copies of itself arranged consecutively
as needed to reach the desired value ofm. For example, if x = 4 andm = 8, thenm = 2+3q for q = 2 so the corresponding
vector in Fig. 2.2 produces the circular labeling 0, 4, 7, 1, 4, 7, 1, 5 when read off clockwise around C8 starting at v0. We
leave the verification that these are indeed k-circular L(3, 1)-labelings of Cm to the reader but would like to note that since
k ≥ 8 and x = 3, 4, . . . , k − 3, the pairs (0, k), (0, k − 1), (1, k) are not used to label two adjacent vertices. �

Theorem 2.4. Let n ≥ 1, p ≥ 2, 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers. If G = Fn(m1,m2, . . . ,mp), then λ(G) ≤ 2p + 4.

Proof. Let s = 0 if m1 > 3 or let s be the largest positive integer such thatms = 3.
If s = p = 2, let t be the smallest multiple of 3 so that t ≥ n. Use t/3 copies of matrix A in Fig. 2.3 arranged vertically to

label one of the petals of Ft(3, 3). Similarly label the other petal of Ft(3, 3) using matrix B in Fig. 2.3.
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Fig. 2.2. k-circular L(3, 1)-labeling of Cm withm ≥ 4 (shaded blocks are repeated q ≥ 1 times).

Fig. 2.3. Matrices A and B used construct an 8-labeling of Ft (3, 3).

Fig. 2.4. Pairs of labels used for the vertices adjacent to the vertex in the stem on the
0th layer of G = Fn(m1,m2, . . . ,mp) when p = 5 and s = 2 in Theorem 2.4.

Fig. 2.5. L(2, 1)-labeling of G = F5(3, 3, 4, 4, 5) constructed in Theorem 2.4.

By inspection, this is an 8-labeling of Ft(3, 3) and therefore λ(G) ≤ 8 = 2p + 4 since G is a subgraph of Ft(3, 3).
If s = p > 2, label the 0th layer of petal i with labels 0, i + 2, i + p + 2 for i = 1, 2, . . . , p where the label 0 is assigned

to the vertex in the stem. These are all (2p + 4)-circular L(3, 1)-labelings of C3 and together induce a (2p + 4)-circular
L(3, 1)-labeling of F1(3, 3, . . . , 3) with p petals which is isomorphic to the 0th layer of G. By Theorem 2.1, there exists a
(2p + 4)-labeling of Pn � F1(3, 3, . . . , 3) with p petals, which is isomorphic to G. Thus, λ(G) ≤ 2p + 4.

We can finally consider the case where 0 ≤ s < p. Similarly to the previous case, it is sufficient to exhibit a (2p + 4)-
circular L(3, 1)-labeling of the 0th layer of G to conclude that λ(G) ≤ 2p + 4 by Theorem 2.1. For i = 1, 2, . . . , s, label
the 0th layer of petal i with labels 0, i + 2, 2p − i + 3 where the label 0 is assigned to the vertex in the stem. These are all
(2p + 4)-circular L(3, 1)-labelings of C3 which together induce a (2p + 4)-circular L(3, 1)-labeling of F1(3, 3, . . . , 3) with
s petals. Extend this labeling to the remaining vertices in the 0th layer of G by labeling the 0th layer of petal s + j for each
j = 1, 2, . . . , p− swith a (2p+4)-circular L(3, 1)-labeling of Cms+j which assigns label 0 to the vertex in the stem and labels
s + 2j + 1 and s + 2j + 2 to the vertices adjacent to it. Lemma 2.3 guarantees the existence of such labelings by selecting
k = 2p + 4 (note that 3 ≤ s + 2j + 1 ≤ s + 2(p − s) + 1 ≤ 2p + 1 = k − 3). The resulting labeling is a (2p + 4)-circular
L(3, 1)-labeling of the 0th layer of G. We leave the verification of this claim to the reader but the example in Fig. 2.4might be
helpful in understanding the choice of labels for the vertices adjacent to the vertex in the stem; if n = 5, the corresponding
final L(2, 1)-labeling is shown in Fig. 2.5. �

In Corollary 2.6we show that the upper bound in Theorem2.4 is tightwhen n ≥ 5 using the followingwell-known result.

Result 2.5 ([10]). If a graph G contains three vertices with maximum degree ∆(G) ≥ 2 and one of them is adjacent to the
other two vertices, then λ(G) ≥ ∆(G) + 2.

Corollary 2.6. Let n ≥ 5, p ≥ 2, 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers. If G = Fn(m1,m2, . . . ,mp), then λ(G) = 2p + 4.

Proof. This follows immediately from Theorem 2.4 and Result 2.5 since there are three vertices in the stem with degrees
∆(G) = 2p + 2 and one of them is adjacent to the other two vertices. �
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Fig. 3.1. L(2, 1)-labelings of Cm withm ≥ 4 in Lemma 3.1 (shaded blocks are repeated q ≥ 1 times).

Fig. 3.2. (2p + 1)-labelings of Cm withm ≥ 4 in Theorem 3.2 (shaded blocks are repeated q ≥ 1 times).

3. The λ-number of flowers (n = 1)

It is well known that the λ-number of any graph is at least one more than its maximum degree. So if G is a flower with
p ≥ 2 petals, then its λ-number is between ∆(G) + 1 = 2p + 1 and the general upper bound 2p + 4 of Theorem 2.4. In this
section we show that this lower bound is actually the exact λ-number of G.

Lemma 3.1. Let k andm be integers such that k ≥ 1 andm ≥ 4. Then there exists (a 5-labeling, if k = 1) or (a (2k+1)-labeling,
if k > 1) of Cm which assigns label 0 to an arbitrary vertex and labels 2k and 2k + 1 to the vertices adjacent to it.

Proof. As in the proof of Lemma 2.3, the desired labelings are exhibited in Fig. 3.1. �

Theorem 3.2. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers. If G = F1(m1,m2, . . . ,mp), then λ(G) = 2p + 1.

Proof. Letw be the only vertex in the stemofG and let s = 0 ifm1 > 3or let sbe the largest positive integer such thatms = 3.
Set b = p− s. Let H1 (resp., H2) be the subgraph of G induced by the vertices in petals 1, 2, . . . , s (resp., s+ 1, s+ 2, . . . , p).
To show that λ(G) = ∆(G) + 1 = 2p + 1, we will construct a (2p + 1)-labeling f of G using L(2, 1)-labelings of H1 and H2,
respectively, for different combinations of values of s and b. For the sake of brevity, we will omit the formal verification that
each f is indeed an (2p + 1)-labeling as the proofs are fairly straightforward.

If s ≥ 2, then H1 is isomorphic to Amalg(K1; K3, K3, . . . , K3) with s copies of K3 and from [1] we have λ(H1) = 2s + 1
(a particular case of Theorem 2.3 on p. 883 of [1]; note that this result requires s ≥ 2); let f1 be an arbitrary (2s+ 1)-labeling
of H1. Note that we must have f1(w) = 0 and the 2s vertices adjacent to w are assigned the different labels 2, 3, . . . , 2s+ 1.
Hence, if b = 0, then p = s and we can set f = f1.

If b ≥ 2, then H2 is isomorphic to Amalg(P1; Cms+1 , Cms+2 , . . . , Cmp). Let f2 be the (2b+ 1)-labeling of H2 using Lemma 3.1
to label each Cms+k for k = 1, 2, . . . , bwhere the label 0 is assigned tow and labels 2k and 2k+1 are assigned to the vertices
adjacent to w. Hence, if s = 0, then p = b and we can set f = f2.

If s ≥ 2 and b ≥ 2, then set f (v) = f1(v) + 2b if v ∈ H1 and v ≠ w, and set f (v) = f2(v) otherwise.
If s = 1 and b ≥ 2, then set f (v) = f2(v) + 1 if v ∈ H2 and v ≠ w, f (w) = 0, and if x, y are the two vertices in H1

(isomorphic to C3) adjacent to w, set f (x) = 2 and f (y) = 2p + 1.
If s ≥ 2 and b = 1, then set f (v) = f1(v) + 1 if v ∈ H1 and v ≠ w, f (w) = 0, and if x, y are the two vertices in H2

(isomorphic to Cm for some m ≥ 4) adjacent to w, set f (x) = 2 and f (y) = 2p + 1. In the left-most table of Fig. 3.2, we
exhibit the desired (2p + 1)-labelings of Cm extending the given partial labeling.

If s = 1 and b = 1, then set f (u) = 2 and f (v) = 5 where u, v are the two vertices in H1 (isomorphic to C3) adjacent
to w, f (w) = 0, and if x, y are the two vertices in H2 (isomorphic to Cm for some m ≥ 4) adjacent to w, set f (x) = 3 and
f (y) = 4. In the right-most table of Fig. 3.2, we exhibit the desired (2p + 1)-labelings of Cm extending the given partial
labeling. �

4. The λ-number of generalized flowers with n = 2

In this section, we relied on a simple backtracking computer program to find the λ-numbers of a finite family of graphs
that are subgraphs of certain generalized flowers with n = 2. The same programwas also used to construct L(2, 1)-labelings
for individual petals of a given generalized flower with n = 2 that together provided an L(2, 1)-labeling for the entire graph.
We will not present formal verifications of these facts as they are long and tedious case discussions but will exhibit the
labelings we used so that the interested reader can check that they are indeed L(2, 1)-labelings. The next result improves
the upper bound of Theorem 2.4 for the λ-numbers of generalized flowers with n = 2.
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Fig. 4.1. L(2, 1)-labelings of F2(m1,m2, . . . ,mp) (the shaded block with the last, 0th, and 1st columns in each matrix is repeated q ≥ 1 times).

Fig. 4.2. 7-labeling of P2 � C8 .

Fig. 4.3. Useful graphs with λ-number 7.

Lemma 4.1. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = F2(m1,m2, . . . ,mp). Then λ(G) ≤ 7 if p = 2,
otherwise λ(G) ≤ 2p + 2.

Proof. The result follows from the L(2, 1)-labelings of G given in Fig. 4.1 in which each array of labels with 2 rows and i = 3,
4, or 5 columns is used for a petal isomorphic to P2 � Cm (0th column used for the stem) where the shaded block consisting
of the last, 0th, 1st columns can be replacedwith q ≥ 1 copies of itself arranged consecutively as needed to reach the desired
value of m. For example, if p = 2 and m = 8, then m = 2 + 3q for q = 2 so the corresponding matrix in Fig. 4.1 for petal 1
produces the 7-labeling in Fig. 4.2. �

We will first focus on the case p = 2 as it offers more complexity.

Lemma 4.2. Let 3 ≤ m1 ≤ m2 be integers and let G = F2(m1,m2). If {m1,m2} ∩ {3, 6} ≠ ∅ or (m1,m2) ∈ {(4, 4), (4, 8)},
then λ(G) = 7; otherwise λ(G) = 6.

Proof. We used a computer program to verify that all the graphs in Fig. 4.3 have λ-number 7. (Note: Each of these
graphs is minimal in the sense that any proper subgraph will have λ-number 6 or less.) If {m1,m2} ∩ {3, 6} ≠ ∅ or
(m1,m2) ∈ {(4, 4), (4, 8)}, then G contains Hi as a subgraph for some i = 1, 2, 3, 4 (white vertices in the stem). Hence
λ(G) ≥ 7 and the equality follows from Lemma 4.1.

Suppose {m1,m2} ∩ {3, 6} = ∅ and (m1,m2) ∉ {(4, 4), (4, 8)}. Since λ(G) ≥ ∆(G) + 1 = 6, it is sufficient to exhibit a
6-labeling of G to conclude that λ(G) = 6. If (m1,m2) = (8, 8), then Fig. 4.4 contains a 6-labeling of G. If (m1,m2) ≠ (8, 8),
then it is possible to choose one 6-labeling of P2 � Cm1 from one of the columns of the table in Appendix A, and another
6-labeling of P2 � Cm2 from the other column to obtain a 6-labeling of G. �

Theorem 4.3. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = F2(m1,m2, . . . ,mp). If p = 2 and
[{m1,m2} ∩ {3, 6} ≠ ∅ or (m1,m2) ∈ {(4, 4), (4, 8)}], then λ(G) = 7; otherwise λ(G) = 2p + 2.
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Fig. 4.4. 6-labeling of F2(8, 8).

Fig. 4.5. Subgraph of G∗ used to generate the table in Appendix A
(shaded vertices and thick edges correspond to the 6-labeling in the second column of the table form = 7).

Proof. The case p = 2 is proved in Lemma 4.2. If p > 2, then λ(G) ≥ ∆(G) + 1 = 2p + 2. But Lemma 4.1 implies
λ(G) ≤ 2p + 2, and therefore the desired equality follows. �

We will close this section offering an overview on how we obtained the table in Appendix A as the computer program
alonewas unable to derive an equivalent set of 6-labelings due to the large number of possibilities. Our goal was to construct
6-labelings ofG = F2(m1,m2) for certain values ofm1 andm2 that had reasonably compact descriptions andwere preferably
extensions of the same partial labeling of the subgraph of G induced by the vertices on the stem and their neighbors. The
two vertices on the stem have to be labeled with 0 and 6 as they are the only vertices of G achieving the maximum degree
5. The next step was to find labels to assign to the four neighbors of the vertices in the stem within a petal such that this
partial labeling could be extended to the entire petal, regardless of the size of the petal. Note that the four vertices outside
the stem and adjacent to the vertex on the stem labeled 0 (resp., 6) must be labeled 2, 3, 4, 5 (resp., 1, 2, 3, 4). Consider the
auxiliary graph G∗ with vertices (i, j) where i, j ∈ {0, 1, . . . , 6} are at least two apart, and edges connect pairs of vertices (i, j)
and (i′, j′) so that i and i′ are at least two apart, j and j′ are at least two apart, i ≠ j′, and i′ ≠ j. Therefore, if (i, j) and (i′, j′) are
adjacent in G∗, then the transpose of these two pairs could be used as two consecutive columns in an L(2, 1)-labeling of a
petal of G. We would like to find closed paths (not necessarily simple) of ordermℓ in G∗ for ℓ = 1, 2 both containing a vertex
(0, 6) so that the vertices immediately before and after this vertex on each closed path have all different coordinates; hence
the two L(2, 1)-labelings corresponding to these closed paths can be assigned to each petal of G, respectively, generating
the desired 6-labeling. By inspection, G∗ contains the subgraph in Fig. 4.5 and each 6-labeling in the table in Appendix Awas
obtained from a closed path in this subgraph. For example, the closed path consisting of the shaded vertices and thick edges
corresponds to the 6-labeling on the second column of the table in Appendix A form = 7.

5. The λ-number of generalized flowers with n = 3 and 4

Wewill first focus on the case n = 4 since most of the case n = 3 will follow directly from the former case. Even though
each result has a structure analogous to the structure of its counterpart in the case n = 2, their proofs are in general more
involved. The first result improves the upper bound of Theorem 2.4 for the λ-numbers of generalized flowers with n = 4.

Lemma 5.1. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = F4(m1,m2, . . . ,mp). Then λ(G) ≤ 8, if p = 2,
otherwise λ(G) ≤ 2p + 3.

Proof. If p = 2, Theorem 2.4 implies λ(G) ≤ 2p + 4 = 8. If p > 2, the result follows from the (2p + 3)-labelings of G given
in Fig. 5.1 in which each array of labels with 4 rows and i = 3, 4, or 5 columns is used for a petal isomorphic to P4 � Cm (0th
column used for the stem) where the block consisting of the last, 0th, 1st columns can be replaced with q ≥ 1 copies of itself
arranged consecutively as needed to reach the desired value ofm. �

The next result focuses on the case p = 2.

Lemma 5.2. Let 3 ≤ m1 ≤ m2 be integers and let G = F4(m1,m2). If (m1,m2) ∈ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5)}, then
λ(G) = 8; otherwise λ(G) = 7.
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Fig. 5.1. (2p + 3)-labelings of F4(m1,m2, . . . ,mp) with p > 2 (the block with the last, 0th, and 1st columns in each matrix is repeated q ≥ 1 times).

Fig. 5.2. Useful graphs with λ-number 8.

Proof. We used a computer program to verify that all the graphs in Fig. 5.2 have λ-number 8. (Note: Each of these graphs
is minimal in the sense that any proper subgraph will have λ-number 7 or less.)

If (m1,m2) ∈ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5)}, then G contains an Hi for some i = 5, 6, . . . , 9 as a subgraph (white
vertices in the stem). Hence λ(G) ≥ 8 and the equality follows from Lemma 5.1.

Suppose (m1,m2) ∉ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5)}. Sinceλ(G) ≥ ∆(G)+1 = 7, it is sufficient to exhibit a 7-labeling
of G to conclude that λ(G) = 7. If (m1,m2) = (5, 7), then Fig. 5.3 contains a 7-labeling of G.

If (m1,m2) = (6, 6), then Fig. 5.4 contains a 7-labeling of G.
If m1 = 5 and m2 ≠ 7, then label petal 1 with the 7-labeling in Fig. 5.5 and label petal 2 with the 7-labeling of P4 � Cm2

from the third column of the table in Appendix B to obtain a 7-labeling of G.
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Fig. 5.3. 7-labeling of F4(5, 7).

Fig. 5.4. 7-labeling of F4(6, 6).

Fig. 5.5. 7-labeling for petal 1 of F4(5,m2).

Fig. 5.6. 7-labelings of F3(3, 6), F3(4, 4), and F3(4, 5).

Finally, ifm1 ≠ 5 and (m1,m2) ≠ (6, 6), then it is possible to choose one 7-labeling of P4 � Cm1 from one of the first two
columns of the table in Appendix B, and another 7-labeling of P4 � Cm2 from the other column (also from the first two) to
obtain a 7-labeling of G. �

Theorem 5.3. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = F4(m1,m2, . . . ,mp). If p = 2 and
(m1,m2) ∈ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5)}, then λ(G) = 8; otherwise λ(G) = 2p + 3.

Proof. The case p = 2 is proved in Lemma 5.2. If p > 2, then λ(G) ≥ ∆(G) + 1 = 2p + 3 and the equality follows from
Lemma 5.1. �

Theorem 5.4. Let p ≥ 2 and 3 ≤ m1 ≤ m2 ≤ · · · ≤ mp be integers and let G = F3(m1,m2, . . . ,mp). If p = 2 and
(m1,m2) ∈ {(3, 3), (3, 5)}, then λ(G) = 8; otherwise λ(G) = 2p + 3.

Proof. If p = 2 and (m1,m2) ∈ {(3, 3), (3, 5)}, then G contains H5 or H6 as a subgraph, hence λ(G) ≥ 8 and the equality
follows from Theorem 2.4.

Suppose p ≠ 2 or (p = 2 and (m1,m2) ∉ {(3, 3), (3, 5)}). Since G is a subgraph of F4(m1,m2, . . . ,mp), then Theorem 5.3
implies that λ(G) ≤ 2p + 3 except when p = 2 and (m1,m2) ∈ {(3, 6), (4, 4), (4, 5)}, therefore equality holds since
λ(G) ≥ ∆(G) + 1 = 2p + 3. Combining this last general lower bound and the 7-labelings of G in Fig. 5.6 for p = 2 and
(m1,m2) ∈ {(3, 6), (4, 4), (4, 5)}, we also obtain λ(G) = 2p + 3. �

6. Concluding remarks

We completely characterized the λ-number of generalized flowers in Theorem 1.1 which summarizes the results in
Corollary 2.6 and Theorems 4.3, 5.3, and 5.4. To determine a tight general upper bound for this number, we introduced the
notion of extending a circular L(d + 1, 1)-labeling of a graph G to an L(d, 1)-labeling of Pn �G without increasing the span
of labels used. This approach unifies a series of seemingly disparate techniques found in the literature to determine upper
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bounds for the λ-number of Pn �G for different families of graphs G. Similar approaches may be useful in investigating the
λ-number of the Cartesian product of other families of graphs.

In closing, we would like to remark that the λ-numbers of amalgamations of rectangular grids along a path determined
in [1] could be derived from the results in this manuscript as these amalgamations are subgraphs of the amalgamations of
cylindrical rectangular grids along a path studied here.
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Appendix A

6-labelings of P2 � Cm for the two petals of F2(m1,m2)when {m1,m2}∩{3, 6} = ∅ and (m1,m2) ∉ {(4, 4), (4, 8), (8, 8)}
used in Lemma 4.2 (the two 6-labelings must belong to different columns).
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Appendix B

7-labelings of P4 � Cm for the petals of F4(m1,m2) when (m1,m2) ∉ {(3, 3), (3, 5), (3, 6), (4, 4), (4, 5), (5, 7), (6, 6)}
used in Lemma 5.2.
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