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Abstract For an integer d ≥ 2, an L(d,1)-labeling of a graph G is a function f from
its vertex set to the non-negative integers such that | f (x)− f (y)| ≥ d if vertices x and
y are adjacent, and | f (x) − f (y)| ≥ 1 if x and y are at distance two. The minimum
span over all the L(d,1)-labelings of G is denoted by λd(G). For a given integer k ≥ 2,
the edge-path-replacement of G or G(Pk) is the graph obtained from G by replacing
each edge with a path Pk on k vertices. We show that the edges of G can be colored
with �Δ(G)/2� colors so that each monochromatic subgraph has maximum degree at
most 2 and use this fact to establish general upper bounds on λd(G(Pk)) for k ≥ 4. As
a corollary, we settle the following conjecture by Lü (J Comb Optim, 2012): for any
graph G with Δ(G) ≥ 2, λ2(G(P4)) ≤ Δ(G) + 2. Moreover, λ2(G(P4)) = Δ(G)+1
when Δ(G) is even and different from 2. We also show that the class of graphs G(Pk)

with k ≥ 4 satisfies a conjecture by Havet and Yu (2008 Discrete Math 308:498–513)
in the related area of (d, 1)-total labeling of graphs.
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1 Introduction

When allocating frequency bands among spatially distributed transmitters, one may
reduce interference by assigning bands which are sufficiently spectrally separated to
transmitters in close proximity to one another. In one graph theoretical model of this
problem, each vertex represents a transmitter, each edge connects vertices associated
to transmitters that are sufficiently close, and the bands of the frequency spectrum
are represented by a collection of non-negative integers. To reduce interference when
allocating frequency bands, we assign a non-negative integer to each vertex such that
any two adjacent vertices receive integers at least d ≥ 2 apart, and vertices at distance
two receive integers at least one apart. More formally, an L(d,1)-labeling of G is a
function f from the vertex set to the non-negative integers such that | f (x)− f (y)| ≥ d
if vertices x and y are adjacent (distance one condition), and | f (x) − f (y)| ≥ 1
if x and y are at distance two (distance two condition). L(d,1)-labelings have been
studied extensively since the introduction of L(2,1)-labelings in Griggs and Yeh (1992)
and continue to generate a rich literature as corroborated by several articles recently
published or to appear (Adams et al. 2012; Cerioli and Posner 2012; Charpentier et
al. 2012; Chia et al. 2012; Havet et al. 2012; Lin and Wu 2012; Lü 2012; Lü and Lin
2012; Panda and Goel 2012; Wang and Lin 2012; Wu et al. 2012; Zhai et al. 2012). For
an overview on the subject, we refer the reader to the surveys in (Calamoneri 2011)
and (Yeh 2006).

The minimum span over all the L(d,1)-labelings of a graph G will be denoted
by λd(G). Griggs and Yeh (1992) conjectured that λ2(G) ≤ Δ2(G) where Δ(G)

denotes the maximum degree of G. This conjecture holds for Δ(G) ≥ 1069 (Havet
et al. 2012; Calamoneri 2011) but the best general upper bound yet established is
λ2(G) ≤ Δ2(G)+Δ(G)−2 (Gonçalves 2008). As the general problem of determining
λ2(G) is NP-hard (Georges et al. 1994), it is of interest to find bounds or exact values
for λd(G) within certain classes of graphs. For instance, the L(2,1)-labelings of the
edge-path-replacement of graphs were first investigated by Lü (2012) and further
generalized to L(d,1)-labelings by Lü and Lin (2012). For k ≥ 2, the edge-path-
replacement G(Pk) of a graph G is a graph obtained by replacing each edge with a
path Pk on k vertices. In (Lü 2012) and (Lü and Lin 2012), bounds and some exact
values for λd(G(Pk)) were obtained for different families of graphs and several values
of d and k. In particular, the bound λ2(G(P4)) ≤ Δ(G) + 4 was established in (Lü
2012) and later improved to λ2(G(P4)) ≤ Δ(G) + 3 by the more general result
λd(G(P4)) ≤ Δ(G) + 2d − 1 if Δ(G) ≥ 3 in (Lü and Lin 2012). However, these
bounds failed to be tight for a significant number of graphs even when d = 2. For
example, if G is a tree, wheel, Möbius ladder, or the Cartesian products of two paths,
of two cycles, of a cycle and a path, or of two complete graphs, then λ2(G(P4)) is
either Δ(G) + 1 or Δ(G) + 2 (Lü 2012). The same paper also proves that, for all k ≥
5, the bound λ2(G(Pk)) ≤ Δ(G) + 2 holds for any graph with Δ(G) ≥ 2, hence the
following natural conjecture was proposed:

Conjecture 1.1 (Lü 2012) For any graph G with Δ(G) ≥ 2, λ2(G(P4)) ≤ Δ(G)+2.

Closely related to the L(d,1)-labeling is the (d,1)-total labeling studied in (Havet
and Yu 2008). A (d,1)-total labeling of G is a function g from the union of the vertex
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and edge sets to the non-negative integers such that |g(x) – g(y)| ≥ d if vertex x is
incident to edge y, and |g(w) − g(z)| ≥ 1 if w and z are two adjacent vertices or two
incident edges. The minimum span over all the (d,1)-total labelings of a graph G is
denoted by λT

d (G) and is linked to the minimum span over all the L(d,1)-labelings
through the equalities λT

d (G(Pk)) = λd(G(P2k−1)) for k ≥ 2 (Lü 2012). Note that
λT

d (G) = λT
d (G(P2)) = λd(G(P3)). The following conjecture was proposed:

Conjecture 1.2 (Havet and Yu 2008) For any graph G, λT
d (G) ≤ Δ(G) + 2d − 1.

In Sect. 2, we use a classic result in the area of graph factorizations to show that any
graph G admits an edge-coloring using �Δ(G)/2� colors so that each monochromatic
subgraph has maximum degree at most 2. We then use this fact to establish general
upper bounds on λd(G(Pk)) for k ≥ 4. These bounds are used to verify that Conjecture
1.1 is true. In addition, if Δ(G) is even and different from 2, then λ2(G(P4)) =
Δ(G) + 1. The same bounds are also used to show that the graphs G(Pk) with k ≥ 4
for any graph G satisfy Conjecture 1.2.

2 Upper bounds for λd(G(Pk)) for k ≥ 4

In this section we will show that Conjecture 1.1 is true and that the graphs G(Pk)

with k ≥ 4 for any graph G satisfy Conjecture 1.2. We first provide some preliminary
definitions and a result on factorization of graphs.

A subgraph F of a graph G is a factor of G if F is spanning in G. If the edge set
of G can be represented as an edge-disjoint union of factors F1, F2, . . ., Fh , we shall
refer to this set of factors as a factorization of G; in addition, if every vertex in each Fi ,
for i = 1, 2, . . ., h, has degree r , we call this factorization an r-factorization of G. The
following result provides a complete characterization of graphs with a 2-factorization:

Result 2.1 (Petersen 1891) A graph G has a 2-factorization if and only if G is a
regular graph and Δ(G) is even.

We present an edge coloring of graphs in Lemmas 2.2 and 2.3 that will be useful
in Theorem 2.4.

Lemma 2.2 Let G be an arbitrary graph. Then there exists a regular graph G ′ so that
G is a subgraph of G ′ with Δ(G ′) = Δ(G) if Δ(G) is even, and Δ(G ′) = Δ(G) + 1
if Δ(G) is odd.

Proof Let p = Δ(G) if Δ(G) is even, and p = Δ(G) + 1 if Δ(G) is odd. Since
there is an even number of odd degree vertices in G, for each pair of vertices u, w of
odd degrees, we add a new copy of K p+1 − e (the complete graph on p + 1 vertices
without a single edge e), connect u to one of the two vertices of degree p − 1 in this
copy, and connect w to the other vertex of degree p − 1. In the new graph, all vertices
have even degrees and the maximum degree is p. For each vertex v with degree deg(v)
in the new graph, add q = (p − deg(v))/2 pairwise disjoint copies of K p+1 − e and
connect v to the two vertices of degree p − 1 in each of these q copies. The resulting
graph G ′ is regular, contains G as a subgraph, and has Δ(G ′) = p. ��
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Lemma 2.3 Let G be an arbitrary graph. Then it is possible to color the edges of G
with �Δ(G)/2� colors so that each monochromatic subgraph has maximum degree at
most 2.

Proof Use Lemma 2.2 to construct a regular graph G ′ so that G is a subgraph of
G ′ with Δ(G ′) = Δ(G) if Δ(G) is even, and Δ(G ′) = Δ(G) + 1 if Δ(G) is odd.
By Result 2.1, G has a 2-factorization F1, F2, . . ., Fh . Since each Fi is a spanning
subgraph of G with vertices of degree 2 for i = 1, 2, . . ., h, and since every vertex
has even degree Δ(G ′), we conclude that h = Δ(G ′)/2 = �Δ(G)/2�. Color each edge
e of G with color i if e belongs to Fi . This edge-coloring uses at most h colors. To
show that exactly h colors were used, observe that a vertex v of degree Δ(G) in G is
also a vertex of degree Δ(G ′) in G ′; since Δ(G) and Δ(G ′) differ by at most one, the
edges of G incident to v will use at least h colors. ��
Theorem 2.4 Let G be an arbitrary graph and let d ≥ 2 be an integer. Then

i. λd(G(P4)) ≤ d + 2 if Δ(G) ≤ 2, and
ii. λd(G(P4)) ≤ d + �Δ(G)/2� + max{�Δ(G)/2�, d} – 1 otherwise.

Proof First note that Δ(G) = Δ(G(P4)). If Δ(G) ≤ 2, then G(P4) is a disjoint union
of paths and cycles and hence the required upper bound holds since it is known that
λd(H) ≤ d + 2 if H is a path or a cycle (Griggs and Yeh 1992; Georges and Mauro
1995).

Suppose on the other hand that Δ(G) ≥ 3 and set h = �Δ(G)/2�. In view of
Lemma 2.3, color the edges of G with h colors so that each monochromatic subgraph
has maximum degree at most 2, and let G1, G2, . . ., Gh be these subgraphs (they
are not necessarily spanning). Note that for each i = 1, 2, . . ., h there is a natural
isomorphism between Gi (P4) and its corresponding subgraph of G(P4), so we will
also call this subgraph Gi (P4) for the sake of simplicity; for similar reasons, we will
also say that a vertex in G(P4) is in G if it corresponds to an original vertex in G.

In G(P4), label all the vertices in G with 0. The remaining vertices in G(P4) will
be labeled as follows. For a fixed i = 1, 2, …, h, each nontrivial path and each cycle in
Gi (P4) is a sequence of vertices that repeats the following ordered pattern: a vertex in
G followed by two vertices that are not in G and not in any Gj (P4) for j 	= i . Letting
m = max{�Δ(G)/2�, d}, each occurrence of this pattern is labeled with the three
labels 0, (d + i − 1), (d + m + i − 1), respectively, in order, from left to right along
each path and clockwise around each cycle. Note that each vertex in Gi (P4) that is
also in G maintains its original label 0. All the vertices in G(P4) get assigned a label
as summarized in Table 1. (In Fig. 1, we provide an example of this construction.)

Let H be either a path or a cycle in Gi (P4) for some i = 1, 2, . . ., h. By inspection
of the second column of Table 1, the labels used in H induce an L(d,1)-labeling of H
since both distance conditions are satisfied within H (recall m = max{�Δ(G)/2�, d} ≥
d). Since each monochromatic subgraph of G has maximum degree at most 2, the
vertices labeled 0 in the original graph G can only belong to at most one connected
component of each Gi (P4) for i = 1, 2, . . ., h. All the labels in the second column
of Table 1 that will be assigned to vertices adjacent to the vertices labeled 0 in G(P4)
are different, so these labels do not violate the distance two condition. Therefore, we
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Table 1 Labeling summary in
the proof of Theorem 2.4 for
G(P4) where h = �Δ(G)/2�
and m = max{�Δ(G)/2�, d}

Subgraph of G(P4) Repeating label pattern for paths/cycles

G1(P4) 0, d, d + m

G2(P4) 0, d + 1, d + m + 1

G3(P4) 0, d + 2, d + m + 2

… … … …

Gh−1(P4) 0, d + h − 2, d + h + m − 2

Gh(P4) 0, d + h − 1, d + h + m − 1

Fig. 1 The graph G on the left shows an edge-coloring satisfying Lemma 2.3 (colors represented by
solid, dashed, and dotted edges, respectively); the graph on the right shows the L(2,1)-labeling of G(P4)

constructed in the proof of Theorem 2.4.

have constructed an L(d,1)-labeling of G(P4) using labels in 0, 1, …, d + h + m − 1,
and so λd(G(P4)) ≤ d + h + m − 1. ��
Corollary 2.5 Let G be an arbitrary graph and let d ≥ 2 be an integer. For any integer
q ≥ 0,

i. λd(G(P3q+4)) ≤ d + 2 if Δ(G) ≤ 2, and
ii. λd(G(P3q+4)) ≤ d + �Δ(G)/2� + max{�Δ(G)/2�, d} − 1 otherwise.

Proof Let q be a nonnegative integer. If Δ(G) ≤ 2, then λd(G(P3q+4)) ≤ d + 2 by an
argument similar to the one used in the proof of Theorem 2.4 i. Suppose on the other
hand that Δ(G) ≥ 3 and consider the labeling of G(P4) constructed in the proof of
Theorem 2.4 ii. For a fixed edge e of G, let (0, x, y) be the label pattern in the second
column of Table 1 which was used to label the first 3 vertices in the P4 that replaced
e in G(P4); repeat this same label pattern q + 1 times to label the first 3q + 3 vertices
of P3q+4 that replaces e in G(P3q+4), in order, from left to right along the path, and
label the final vertex in this path with a 0. As in the proof of Theorem 2.4 ii., it can be
shown that this labeling of G(P3q+4) is an L(d,1)-labeling and λd(G(P3q+4)) ≤ d +
�Δ(G)/2� + max{�Δ(G)/2�, d} − 1. ��
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Corollary 2.6 Let G be a graph with �Δ(G)/2� ≥ d ≥ 2. For any integer q ≥
0, λd(G(P3q+4)) ≤ Δ(G) + d; if in addition Δ(G) is even, then λd(G(P3q+4)) =
Δ(G) + d − 1.

Proof Let q be a nonnegative integer. Note that Δ(G) ≥ 3 since �Δ(G)/2� ≥ d ≥ 2.
From Corollary 2.5 we have that λd(G(P3q+4)) ≤ d + 2�Δ(G)/2� − 1. Therefore
λd(G(P3q+4)) ≤ d + Δ(G) − 1 if Δ(G) is even, or λd(G(P3q+4)) ≤ d + Δ(G) if
Δ(G) is odd. Trivially, λd(G(P3q+4)) ≥ Δ(G(P3q+4)) + d − 1 = Δ(G) + d − 1 so
we conclude that λd(G(P3q+4)) = d + Δ(G) − 1 if Δ(G) is even. ��

The caseΔ(G)= 2 in Conjecture 1.1 follows from setting d = 2 and q = 0 in Corollary
2.5, and the remaining cases follow from setting d = 2 and q = 0 in Corollary 2.6
since if Δ(G) ≥ 3, then max{�Δ(G)/2�, d} = �Δ(G)/2�; in addition, λ2(G(P4)) =
Δ(G) + 1 when Δ(G) is even and different from 2.

In what follows, Theorem 2.7 and Corollary 2.8 are similar to Theorem 2.4 and
Corollary 2.5, respectively. Since the proofs are also analogous, some of their details
will be left to the reader for the sake of brevity.

Theorem 2.7 Let G be an arbitrary graph and let d ≥ 2 be an integer. If k = 5 or 6,
then

i. λd(G(Pk)) ≤ d + 2 if Δ(G) ≤ 2, and
ii. λd(G(Pk)) ≤ d + �Δ(G)/2� + max{�Δ(G)/2�, d} otherwise.

Proof Item i. can be verified in the same manner as in the proof of Theorem 2.4
i. Suppose on the other hand that Δ(G) ≥ 3 and let h = �Δ(G)/2� and m =
max{�Δ(G)/2�, d}. When k = 5 or 6, arguments similar to the ones in the proof
of Theorem 2.4 ii. for k = 4, using the label patterns in Table 2 or Table 3, respectively,
in lieu of Table 1, can be used to construct L(d,1)-labelings of G(Pk) using labels
in 0, 1, …, d + h + m so λd(G(Pk)) ≤ d + h + m (for each table, observe that all
the second and all the last labels in each of the repeating label patterns in the second
column are different). ��
Corollary 2.8 Let G be an arbitrary graph and let d ≥ 2 be an integer. If p = 5 or 6,
then, for any integer q ≥ 0,

Table 2 Labeling summary in the proof of Theorem 2.7 for G(P5) where h = �Δ(G)/2� and m =
max{�Δ(G)/2�, d}

Subgraph of G(P5) Repeating label pattern for paths/cycles

G1(P5) 0, d + 1, 1, d + m + 1

G2(P5) 0, d + 2, 1, d + m + 2

G3(P5) 0, d + 3, 1, d + m + 3

. . . . . . . . . . . . . . .

Gh−1(P5) 0, d + h − 1, 1, d + h + m − 1

Gh(P5) 0, d + h, 1, d + h + m
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Table 3 Labeling summary in the proof of Theorem 2.7 for G(P6) where h = �Δ(G)/2� and m =
max{�Δ(G)/2�, d}

Subgraph of G(P6) Repeating label pattern for paths/cycles

G1(P6) 0, d + 1, 1, d + 2, d + m + 2

G2(P6) 0, d + 2, 1, d + 1, d + m + 1

G3(P6) 0, d + 3, 1, d + 1, d + m + 3

G3(P6) 0, d + 4, 1, d + 1, d + m + 4

. . . . . . . . . . . . . . . . . .

Gh−1(P6) 0, d + h − 1, 1, d + 1, d + h + m − 1

Gh(P6) 0, d + h, 1, d + 1, d + h + m

Note that the labels in bold do not follow their respective column pattern

i. λd(G(P3q+p)) ≤ d + 2 if Δ(G) ≤ 2, and
ii. λd(G(P3q+p)) ≤ d + �Δ(G)/2� + max{�Δ(G)/2�, d} otherwise.

Proof Let us first assume that k = 3q + 5 for some nonnegative integer q. If Δ(G) ≤ 2,
then λd(G(P3q+5)) ≤ d +2 by an argument similar to the one used in the beginning of
the proof of Theorem 2.4 i. Suppose on the other hand that Δ(G) ≥ 3 and consider the
labeling of G(P5) constructed in the proof of Theorem 2.7 ii. where h = �Δ(G)/2� and
m = max{�Δ(G)/2�, d}. For a fixed edge e of G, let (0, x, y, z) be the label pattern
which was used to label the first 4 vertices inP5 that replaced e in G(P5); use this same
label pattern followed by q repetitions of the label pattern (0, d, z) to label the first 3q
+ 4 vertices of P3q+5 that replaces e in G(P3q+5) in order, from left to right along the
path, and label the final vertex in this path with a 0. As in the proof of Theorem 2.4
ii., it can be shown that this labeling of G(P3q+5) is an L(d,1)-labeling using labels
in 0, 1, …, d + h + m so λd(G(P3q+5)) ≤ d + h + m. Similar arguments can be used
if k = 3q + 6 for some nonnegative integer q to obtain λd(G(P3q+6)) ≤ d + h + m
(in the argument above, replace each occurrence of 4, 5, (0, x, y, z), Table 2 with 5,
6, (0, w, x, y, z), Table 3, respectively). ��

We close by noticing that Conjecture 1.2 is true for G(Pk) and any integer k ≥ 4
since, from Corollary 2.5 and Corollary 2.8,

i. λd(G(Pk)) ≤ d + 2 ≤ Δ(G) + 2d − 1 if Δ(G) ≤ 2, and
ii. λd(G(Pk)) ≤ d +�Δ(G)/2� + max{�Δ(G)/2�, d} ≤ Δ(G)+2d −1 otherwise.
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