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a b s t r a c t

The spectrum allocation problem in wireless communications can be modeled through
vertex labelings of a graph,wherein each vertex represents a transmitter and edges connect
vertices whose corresponding transmitters are operating in close proximity. One well-
knownmodel is the L(2, 1)-labeling of a graphG inwhich a function f maps the vertices ofG
to the nonnegative integers such that if vertices x and y are adjacent, then |f (x)− f (y)| ≥ 2,
and if x and y are at distance two, then |f (x)−f (y)| ≥ 1. The λ-number ofG is theminimum
span over all L(2, 1)-labelings of G. Informally, an amalgamation of two graphs G1 and
G2 along a fixed graph G0 is the simple graph obtained by identifying the vertices of two
induced subgraphs isomorphic to G0, one in G1 and the other in G2. In this work, we supply
a tight upper bound for the λ-number of amalgamations of several Cartesian products of
complete graphs along a complete graph and find the exact λ-numbers for certain infinite
subclasses of amalgamations of this form. A surprising relationship between the former
upper bound and the minimummakespan scheduling problem is highlighted.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An L(2, 1)-labeling of a graph G is an assignment of non-negative integers to its vertices such that adjacent vertices must
receive integers at least two apart, and vertices at distance twomust receive integers at least one apart. The study of L(2, 1)-
labelings and their variations was motivated by the channel assignment problem [10] and has generated a vast literature
since these labelings were introduced in 1992 [9]. We refer the reader to the surveys in [2,17] and a sample of the most
recent works in the field in [3,4,12–16].

A k-labeling of a graph G is an L(2, 1)-labeling that uses labels in the set {0, 1, . . . , k}. The minimum k so that G has a
k-labeling is called the λ-number of G and will be denoted by λ(G). The long-standing conjecture in the field states that
λ(G) ≤ ∆2(G), where ∆(G) denotes the maximum degree of G [9]. This conjecture holds for graphs with ∆(G) larger than
approximately 1069 [11] and for graphs with at most (⌊∆(G)/2⌋ + 1)(∆2(G) − ∆(G) + 1) − 1 vertices [4]. The best known
general upper bound is λ(G) ≤ ∆2(G)+∆(G)− 2 [8]. Even though the general problem of determining λ(G) is NP-hard [7],
several bounds and exact λ-numbers for different families of graphs are known. One of these families is the class of amal-
gamations of graphs studied in [1].

Definition 1.1. Let G1,G2, . . . ,Gp be p ≥ 2 pairwise disjoint graphs each containing a fixed induced subgraph isomorphic
to a graph G0. The amalgamation of G1,G2, . . . ,Gp along G0 is the simple graph G = Amalg(G0;G1,G2, . . . ,Gp) obtained by
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Fig. 1.1. Amalg(K3; K6, K5, K4) and Amalg(P3; P3 � P4, P3 � P3, P3 � P2), respectively.

Fig. 1.2. L(2, 1)-labeling of Amalg(K3; K3 � K4, K3 � K3, K3 � K2) and the corresponding matrix representation.

identifying G1,G2, . . . ,Gp at the vertices in the fixed subgraphs isomorphic to G0 in each G1,G2, . . . ,Gp, respectively. G0 is
called the spine and Gk is called page k of G for k = 1, 2, . . . , p.

In [1], general upper bounds for the λ-number of the amalgamation of graphs were established by determining the exact
λ-number of the amalgamation of complete graphs along a complete graph. They also provided the exact λ-numbers of
the amalgamation of rectangular grids along a certain path, or more specifically, of the Cartesian product of a path and a
star with spokes of arbitrary lengths. This focus on the Cartesian product in the context of amalgamations motivated us to
investigate the λ-number of the amalgamation of Cartesian products of complete graphs along a complete graph.

Definition 1.2. The Cartesian product of two disjoint graphs G and H , denoted by G�H , is defined as the graph with vertex
set given by the Cartesian product of the vertex set of G and the vertex set of H , where two vertices (u, v) and (w, z) are
adjacent if and only if either [u, w are adjacent in G and v = z] or [v, z are adjacent in H and u = w].

Throughout, p, n0, n1, . . . , np, are all integers greater than or equal to 2, unless otherwise noted. We will study the amal-
gamation K of Cartesian products of complete graphs along a complete graph, more specifically, K = Amalg(Kn0; Kn0 � Kn1 ,
Kn0 � Kn2 , . . . , Kn0 � Knp) where Knk is the complete graph on nk vertices for k = 0, 1, . . . , p. For a fixed k = 1, 2, . . . , p, the
vertices in page k, that is, the vertices in Kn0 � Knk , can be organized in an array formatwhere each vertexwill be represented
by an ordered triple (i, j, k) with i = 0, 1, . . . , n0 −1, and j = 0, 1, . . . , nk −1 so that two vertices are adjacent if their triple
representations satisfy exactly one of the following conditions:

(i) Both triples agree on the first and last coordinate, respectively.
(ii) Both triples agree on the second and last coordinate, respectively.

The subgraph induced by the vertices in the same row of this array is isomorphic to Knk and the subgraph induced by the
vertices in the same column is isomorphic toKn0 . Furthermore, for a fixed i, the vertices (i, 0, k) for k = 1, 2, . . . , p, represent
the same vertex si in the spine Kn0 . For convenience, L(2, 1)-labelings of K will be represented by the n0-by-nk matrices,
k = 1, 2, . . . , p, where the entry on the ith row, jth column of the kth matrix will be the label of vertex (i, j, k); observe that
all the 0th columns of these p matrices must be the same as they contain the labels for the spine.

To illustrate the different amalgamations mentioned in this section, we provide three examples: in Fig. 1.1, an amalga-
mation of complete graphs along a complete graph (on the left), and an amalgamation of rectangular grids along a path (on
the right); in Fig. 1.2, an amalgamation of Cartesian products of complete graphs along a complete graph with an L(2, 1)-
labeling (on the left) and the corresponding matrix representation (on the right). In each subfigure, the vertices in the spine
are in white.
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The following result can be used to derive upper bounds for λ(K) when K = Amalg(Kn0; Kn0 � Kn1 , Kn0 � Kn2 , . . . ,
Kn0 � Knp).

Result 1.3. ([1]) Let G1,G2, . . . ,Gp be p ≥ 2 graphs each containing a fixed induced subgraph isomorphic to a graph G0 with
q vertices. If G1 with m vertices is a graph among G1,G2, . . . ,Gp with maximum number of vertices and if G = Amalg(G0;

G1,G2, . . . ,Gp) has n vertices, then λ(G) ≤ n + q − 1 ifm ≤ (n + q)/2, and λ(G) ≤ 2(m − 1) otherwise.

Using this result, we obtain λ(K) ≤ n0(n1 + n2 + · · · + np − p + 2) − 1 if n1 ≤ n2 + n3 + · · · + np − p + 2, and λ(K) ≤

2(n0n1 − 1) otherwise, and it can be verified that both upper bounds are smaller than the conjectured bound ∆2(K) =

(n0 + n1 + · · · + np − p − 1)2. In Section 2, we provide an even smaller general upper bound for λ(K) and several exact
values within particular infinite subfamilies of amalgamations.Wewill connect this smaller upper bound to the classic min-
imum makespan scheduling problem. In this problem, we are given a finite collection of jobs and machines, as well as the
processing time incurred by scheduling each job in each respective machine. The goal is to find an assignment of jobs toma-
chines that minimizes the makespan or total processing time assigned to any machine. The makespan scheduling problem
is known to be NP-hard even when restricted to two identical machines [5].

2. The λ-number of the amalgamation of Cartesian products of complete graphs along a complete graph

In Theorem 2.3, we will describe an infinite family of amalgamations of Cartesian products of complete graphs along a
complete graph where the λ-number of each amalgamation coincides with the λ-number of one of its pages. This result
will be used later in Corollary 2.4 to provide a general upper bound for the λ-number of most amalgamations of Cartesian
products of complete graphs along a complete graphwith at least 3 vertices. In Corollary 2.6, we present exactλ-numbers for
the cases not covered in Corollary 2.4, still considering spineswith at least 3 vertices, and extend Theorem2.3 in Corollary 2.7.
Finally, the cases in which the spine has exactly 2 vertices are treated in Theorem 2.9 and Corollary 2.10, where we once
more provide some exact values and general upper bounds for the λ-number. Asmentioned previously, all the upper bounds
found in this section will be smaller than the bounds given at the end of the Introduction.

We begin with the following lemma in which we present some properties of a particular matrix of nonnegative integers
that will be the basis for constructing L(2, 1)-labelings of certain Cartesian products of complete graphs along a complete
graph in Theorem 2.3.

Lemma 2.1. Let A be the matrix with n ≥ 3 rows and m ≥ 2 columns where for i = 0, 1, . . . , n − 1 and j = 0, 1, . . . ,m − 1,
the entry in row i, column j is Aij = (im + j(1 − m)) mod nm.

(i) There is a one-to-one correspondence between the set of entries of A and the set {0, 1, . . . , nm − 1}.
(ii) For a given j = 0, 1, . . . ,m − 1, column j of A is the transpose of the j-rotation of the n-tuple (0m + j, 1m + j, . . . , (n −

1)m + j), which is defined as the clockwise circular shifting of its entries by j positions. Observe that this j-rotation can be
obtained by subtracting jm from each entry modulo nm.
Note: For the sake of brevity, a column of amatrix and its transpose will be used interchangeably, and thus the term j-rotation
will also apply to columns.

(iii) If x is in column j of A for some j = 0, 1, . . . ,m − 1, then (x + 1) mod nm is in column (j + 1) mod m.
(iv) For k = 1, 2, . . . , n− 1, let A(k) be the matrix obtained from A by replacing each of its columns, except for the first, with its

(k− 1)-rotation. If x and (x+ 1) mod nm are entries in the same row of A(k), then (m+ k− 1) mod n = 2, x is in column
m − 1, and (x + 1) mod nm is in column 0.

Proof. The definition of A implies that each row is obtained from the previous row by adding m to each entry modulo nm,
and each column is obtained from the previous column by adding 1 − m to each entry modulo nm. Note that this claim is
true if we assume that row 0 follows row n−1 but wemay not assume column 0 follows columnm−1. Fig. 2.1 shows three
examples of A for n = 4 where Am corresponds tom = 8, 9, 10.

Let us start by verifying item (i). By the definition of A, it is obvious that each entry of A belongs to {0, 1, . . . , nm−1}. On
the other hand, if x belongs to {0, 1, . . . , nm− 1}, then using the Euclidean division we obtain unique nonnegative integers
q and r so that x = qm+ r with r < m. Set i = (q+ r) mod n and j = r . Again using the Euclidean division, there are unique
nonnegative integers q′ and r ′ so that q + r = q′n + r ′ with r ′ < n. Clearly i = (q + r) mod n = r ′ so

Aij = (im + j(1 − m)) mod nm = [r ′m + r(1 − m)] mod nm
= [(r ′

− r)m + r] mod nm = [(q − q′n)m + r] mod nm
= [(qm + r) − q′nm] mod nm = (qm + r) mod nm = x.

The last equality follows since 0 ≤ x = qm + r < nm. Hence, item (i) holds.
To prove item (ii), let us consider an arbitrary x = tm+ j for some t = 0, 1, . . . , n− 1 and j = 0, 1, . . . ,m− 1. As in the

verification of item (i), by setting i = (t + j) mod n, we have Aij = x, and thus x is in column j of A. In particular, if t = 0,
then i = j mod n and Aij = j. Therefore, since each entry in column j of A can be obtained from the previous entry in the
same column by addingmmodulo nm, column j is the j-rotation of the n-tuple (0m+ j, 1m+ j, . . . , (n−1)m+ j) as desired.



104 N. Karst et al. / Discrete Applied Mathematics 178 (2014) 101–108

Fig. 2.1. Examples of A for n = 4 where Am corresponds tom = 8, 9, 10.

Fig. 2.2. Examples of A(k) for k = 1, 2, 3, 4 when n = 5 and m = 6.

Fig. 2.3. Examples of B(k) for k = 1, 2, 3, 4 in Theorem 2.3 when n = 5 and m = 6.

To verify item (iii), consider an arbitrary x in column j of A for some j = 0, 1, . . . ,m− 1. By item (ii), x = tm+ j for some
t = 0, 1, . . . , n − 1. If j ≠ m − 1, then x + 1 = tm + (j + 1) which is in column j + 1 of A again by item (ii). Similarly, if
j = m − 1 and t ≠ n − 1, then x + 1 = (t + 1)m + 0 so x + 1 is in column 0 = (j + 1) mod m. Finally, if j = m − 1 and
t = n−1, then (x+1) mod nm = nm mod nm = 0, which is also in column 0 = (j+1) mod m. Therefore, item (iii) is true.

We close the proof by verifying item (iv). For k = 1, 2, . . . , n − 1, let A(k) be the matrix obtained from A by replacing
each of its columns, except for the first, with its (k − 1)-rotation. Obviously, A(1) = A. Fig. 2.2 shows examples of A(k) for
k = 1, 2, 3, 4 when n = 5 andm = 6.

Let k be an arbitrary integer in {1, 2, . . . , n−1} and suppose x and (x+1) mod nm are entries in the same row of A(k). By
item (iii), x is in column j of A(k), and (x+ 1) mod nm is in column (j+ 1) mod m for some j = 0, 1, . . . ,m− 1. If j ≠ 0 and
j ≠ m−1, since each column of A is obtained from the previous column by adding 1−m to each entry modulo nm, wemust
have (x+1) mod nm = [x+ (1−m)] mod nm, and therefore nm divides (x+1)−[x+ (1−m)] = mwhich is not possible
as n ≥ 3. If j = 0, since the second column of A(k) is obtained from the first by adding 1 − m to each entry modulo nm and
then subtracting (k−1)m from each entry modulo nm, we must have (x+1) mod nm = [x+ (1−m)− (k−1)m] mod nm
and therefore nm divides (x + 1) − [x + (1 − m) − (k − 1)m] = km which is not possible as 1 ≤ k ≤ n − 1. Therefore
j = m − 1. We have that column j = m − 1 of A(k) is the (k − 1)-rotation of column m − 1 of A. So by item (ii), column
j = m − 1 is the (m + k − 2)-rotation of the tuple (m − 1, 2m − 1, 3m − 1, . . . , nm − 1) and column (j + 1) mod m = 0
is the tuple (0,m, 2m, . . . , (n − 1)m). Since x and (x + 1) mod nm are in the same row of A, this is only possible if the
former (m+k−2)-rotation is either a 1-rotation or, ifm = 2, a 0-rotation. Butm = 2 is not possible because it would imply
0 = (m+k−2) mod n = k mod n = k contradicting the choice of a positive k. Hence (m+k−2) mod n = 1, or equivalently,
(m+ k− 1) mod n = 2 as desired. For the example in Fig. 2.2, the first and last columns of A(2) are the only ones containing
consecutive labels in the same row in any of the four matrices because (m + k − 1) mod n = (6 + 2 − 1) mod 5 = 2. �

The following result will be used in the proof of Theorem 2.3.

Result 2.2. ([6]) Ifm, n ≥ 2, then λ(Kn � Km) = 4 when n = m = 2; otherwise, λ(Kn � Km) = nm − 1.

Theorem 2.3. Let K = Amalg(Kn; Kn � Km, Kn � Km, . . . , Kn � Km) with p pages where (n > 3,m = 2, and p = n − 2) or
(n,m ≥ 3, and p = n − 1). Then λ(K) = nm − 1.

Proof. Suppose (n > 3,m = 2, and p = n − 2) or (n,m ≥ 3,m > 2, and p = n − 1). Since Kn � Km is a subgraph of K ,
from Result 2.2 we have λ(K) ≥ λ(Kn � Km) = nm − 1. In order to obtain the desired equality, it is sufficient to exhibit an
(nm−1)-labeling of K . Wewill accomplish this by constructing p different n bymmatriceswith entries in {0, 1, . . . , nm−1}
and using each matrix to label one of the p pages Kn � Km of K .

For each k = 1, 2, . . . , p, let A(k) be the matrix as defined in item (iv) of Lemma 2.1. Let k0 be the only integer in {1, 2,
. . . , n} such that (m + k0 − 1) mod n = 2. For k = 1, 2, . . . , k0 − 1, let B(k) = A(k), and for k = k0, k0 + 1, . . . , p, let B(k)
be the matrix obtained from A(k) by replacing its last column with its 1-rotation. Fig. 2.3 shows examples of B(k) for k = 1,
2, 3, 4 when n = 5,m = 6, and k0 = 2 (refer to Fig. 2.2 for the corresponding A(k) for k = 1, 2, 3, 4).



N. Karst et al. / Discrete Applied Mathematics 178 (2014) 101–108 105

Let us consider a fixed k in {1, 2, . . . , p}.Weuse the first columnofmatrixB(k) to label the spine ofK , that is, assign the en-
try in row i, column0of B(k) to vertex si = (i, 0, k) in the spineKn for i = 0, 1, . . . , n−1. Note that therewill be no conflict la-
beling the spine for different values of k since all A(k), and consequently all B(k), coincide on the first column. Each one of the
remainingm−1 columns of B(k) is used to label one of them−1 complete subgraphs isomorphic to the spine induced by the
vertices (i, j, k) for i = 0, 1, . . . , n−1 and a fixed j in {1, 2, . . . ,m−1}, where the entry in row i, column j of B(k) is assigned
to vertex (i, j, k). Wewill first show that this labeling is an L(2, 1)-labeling of page k of K . In view of item (i) in Lemma 2.1, all
the labels in B(k) are different, so two vertices at distance at most two in page k are assigned different labels. It remains to
be shown that adjacent vertices in page k are not assigned consecutive labels. By construction, two adjacent vertices in page
kmust get both labels in the same column of B(k), or both labels in the same row of B(k). Two labels in the same column of
B(k) differ by at leastm ≥ 2 by the definition of B(k) because each row of the original matrix A is obtained from the previous
row by addingm to each entry modulo nm. To show that two labels x and y in the same row of B(k)will also differ by at least
2, we need to break up the discussion into three cases: k < k0, k = k0 and k > k0. If k < k0, then B(k) = A(k) and (m+ k−

1) mod n ≠ 2, so x and y differ by at least 2 as implied by item (iv) in Lemma 2.1. If k = k0, then (m+k0−1) mod n = 2 and
B(k0) agreeswith A(k0) in all but its last columnwhich is by definition ((n−1)m−1, nm−1,m−1, 2m−1, 3m−1, . . . , (n−

2)m − 1), i.e., the 1-rotation of the last column of A(k0) which is exactly a 2-rotation of the tuple (m − 1, 2m − 1, 3m −

1, . . . , nm − 1) (recall the proof of item (iv) of Lemma 2.1). In this case, without loss of generality, x is in the last column of
B(k0) and y is in either the first column,which is (0,m, 2m, . . . , (n−1)m), or in the next to last column, (m−2, 2m−2, 3m−

2, . . . , (n−1)m−2, nm−2). By inspection, if y is in the first column of B(k0), then x and y differ by at leastm+1 ≥ 2while if
y is in the next to last column of B(k0), then x and y differ by at least 2m−1 ≥ 2, both contradicting the choice of labels. Thus
we again conclude that x and y differ by at least 2. Wewill finally assume k > k0. By item (iv) of Lemma 2.1, if neither x nor y
is in the first or last column of B(k), then they differ by at least 2. Assume on the other hand that at least one of x or y is in the
first or last columnof B(k) and suppose for contradiction that x and ydiffer by atmost 1. By item (iii) of Lemma2.1,we need to
discuss three different cases depending onwhich columns contain these labels and show that none of these cases is possible.

Case 1: The first column of B(k), which is (0,m, 2m, . . . , (n − 1)m), contains x and the second column of B(k) contains
y. This second column is either

(I) the k-rotation of (0m + 1, 1m + 1, 2m + 1, . . . , (n − 2)m + 1, (n − 1)m + 1) ifm > 2, or
(II) the (k + 1)-rotation of (1, 3, 5, . . . , 2n − 3, 2n − 1) ifm = 2.

By inspection, if (I) holds, x and y differ by at most 1 only if k mod n = 0 which is impossible since k0 < k < p = n − 1. On
the other hand, if (II) holds, we must have k0 = 1 and the second column of B(1) is (2n− 3, 2n− 1, 1, 3, 5, . . . , 2n− 5), i.e.,
the 1-rotation of the last column of A(1). Note that this tuple is well defined since m = 2 implies n > 3 (recall the initial
assumption (n > 3,m = 2, and p = n − 2) or (n,m ≥ 3, and p = n − 1)). In this case, x and y differ by at most 1 only if
(k + 1) mod n ≤ 1, which is also impossible since k0 < k < p = n − 2.

Case 2: The first column of B(k), which is (0,m, 2m, . . . , (n − 1)m), contains x and the last column of B(k) contains
y. By items (ii) and (iv) of Lemma 2.1 and the definition of B(k), its last column is the (m + k − 1)-rotation of the tuple
(m − 1, 2m − 1, 3m − 1, . . . , nm − 1). By inspection, x and y differ by at most 1 if this (m + k − 1)-rotation is either a
1-rotation or, if m = 2, a 0-rotation. But m = 2 would imply 0 = (m + k − 1) mod n = (k + 1) mod n = k + 1 (the last
equality holds by recalling that m = 2 implies p = n − 2, and thus k + 1 ≤ p + 1 = n − 1), which is not possible as k is
positive. Hence m ≠ 2 and the (m + k − 1)-rotation must be a 1-rotation so (m + k − 1) mod n = 1. This is not possible
either since 1 ≤ k0 < k ≤ p = n − 1 implies (m + k − 1) mod n > (m + k0 − 1) mod n = 2.

Case3: The last columnofB(k) contains x and the next-to-last columnofB(k) contains y. By items (ii) and (iv) of Lemma2.1
and the definition of B(k), its next-to-last column is the (m+k−3)-rotation of the tuple (m−2, 2m−2, 3m−2, . . . , nm−2).
By comparing to the last column of B(k) (as described in Case 2), x and y differ by at most 1 if this (m + k − 3)-rotation will
place the entry m − 2 in the same row as the entry m − 1 on the last column of B(k) which is the (m + k − 1)-rotation
of the tuple (m − 1, 2m − 1, 3m − 1, . . . , nm − 1). So (m + k − 3) = (m + k − 1) mod n or, equivalently, n divides
(m + k − 1) − (m + k − 3) = 2, which is not possible as n ≥ 3.

To conclude that combining all the L(2, 1)-labelings of pages k = 1, 2, . . . , p of K results in an L(2, 1)-labeling of the
entire K , it is sufficient to show that given u and v vertices at distance two in different pages of K , u and v must be assigned
different labels. Such u and v are both adjacent to the same vertex in the spine so their labels are on the same row of B(k)
and B(k′), respectively, for some distinct integers k and k′ in {1, 2, . . . , p}. We will assume without loss of generality that
k < k′. By item (i) of Lemma 2.1, each label in {0, 1, . . . , nm − 1} appears exactly once in B(k), exactly once in B(k′), and in
the same column j in {1, 2, . . . ,m − 1}. Moreover, the column j in B(k) (resp., B(k′)), except for the first column, is either

(III) the (j + k − 1)-rotation (resp., (j + k′
− 1)-rotation) of (0m + j, 1m + j, . . . , (n − 1)m + j) if j ≠ m − 1 or k < k0

(resp., k′ < k0), or
(IV) the (j + k)-rotation (resp., (j + k′)-rotation) of (0m + j, 1m + j, . . . , (n − 1)m + j), otherwise.

Let us suppose for contradiction that B(k) and B(k′) coincide in a particular entry in row i in {0, 1, . . . , n − 1} and column j.
If j ≠ m − 1 or (k < k0 and k′ < k0), then the (j + k − 1)-rotation and (j + k′

− 1)-rotation in (III) must coincide so n must
divide (j+k′

−1)− (j+k−1) = k′
−kwhich is impossible since 1 ≤ k < k′

≤ n−1. If j = m−1, k ≥ k0, and k′
≥ k0, then

the (j + k)-rotation and (j + k′)-rotation in (IV) must coincide so (j + k′
− 1) − (j + k − 1) = k′

− kwhich is impossible as
remarked previously. The only case left to be examined is if j = m − 1 and k < k0 ≤ k′. In this case, the (j + k − 1)-rotation
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Fig. 2.4. Examples of B(k) and C(k) for k = 1, 2, 3 in Corollary 2.6 when n = 4.

and (j + k′)-rotation in (IV) must coincide, so n must divide (j + k′) − (j + k − 1) = k′
− k + 1 which is again impossible

since 1 ≤ k < k′
≤ n − 1. Therefore, u and v must be assigned different labels, and the proof is complete. �

The next two corollaries provide a general upper bound and some exact values for λ(K), respectively, for all amalgama-
tions K of Cartesian products of complete graphs along a complete graph when the spine has at least three vertices. We say
that X1, X2, . . . , Xq is a q-partition of a set Y if X1, X2, . . . , Xq are pairwise disjoint (possibly empty) sets whose union is equal
to Y .

Corollary 2.4. Let K = Amalg(Kn0; Kn0 � Kn1 , Kn0 � Kn2 , . . . , Kn0 � Knp) where n0 ≥ 3, p ≥ 2 and ni ≥ 2 for i = 1, 2, . . . , p
so that K ≠ Amalg(Kn0; Kn0 � K2, Kn0 � K2, . . . , Kn0 � K2) with n0 − 1 pages. If n1 = n2 = · · · = np = 2 and p < n0 − 1, let
q = n0 − 2; otherwise let q = n0 − 1. If l is the minimum of themaxi=1,2,...,q{Σk∈Xi(nk − 1)} over all q-partitions X1, X2, . . . , Xq
of {1, 2, . . . , p}, then λ(K) ≤ n0(l + 1) − 1.

Proof. First suppose n1 = n2 = · · · = np = 2 and p < n0 − 1. We have q = n0 − 2, so consider the q-partition
X1, X2, . . . , Xq of {1, 2, . . . , p} where Xi = {i} for i = 1, 2, . . . , p and Xi = ∅ for i = p + 1, p + 2, . . . , q. Therefore 1 ≤ l ≤

maxi=1,2,...,q{Σk∈Xi(nk −1)} = 1, i.e., l = 1. Setting n = n0 > 3 in Theorem 2.3, we have K ′
= Amalg(Kn0; Kn0 � K2, Kn0 � K2,

. . . , Kn0 � K2)with n0−1 pages andλ(K ′) = 2n0−1. ButK is a subgraph ofK ′ hence,λ(K) ≤ λ(K ′) = 2n0−1 = n0(l+1)−1.
On the other hand, suppose p ≥ n0−1 or that there exists j = 1, 2, . . . , p such that nj > 2. By definition, q = n0−1. If p >

n0 − 1, then for any q-partition X1, X2, . . . , Xq of {1, 2, . . . , p}, there exists t = 1, 2, . . . , q such that Xt contains at least two
integers. Hence,maxi=1,2,...,q{Σk∈Xi(nk−1)} ≥ Σk∈Xt(nk−1) ≥ 2 so l ≥ 2. If p = n0−1, then there exists j = 1, 2, . . . , p such
that nj > 2 since we are assuming K ≠ Amalg(Kn0; Kn0 � K2, Kn0 � K2, . . . , Kn0 � K2) with n0 − 1 pages. In this case, for any
q-partition X1, X2, . . . , Xq of {1, 2, . . . , p}, wemust havemaxi=1,2,...,q{Σk∈Xi(nk−1)} ≥ nj−1 ≥ 2 sowe also have l ≥ 2. Set-
ting n = n0 ≥ 3 andm = l+ 1 ≥ 3 in Theorem 2.3, we have that if K ′′

= Amalg(Kn0; Kn0 � Kl+1, Kn0 � Kl+1, . . . , Kn0 � Kl+1)
with n0 − 1 pages, then λ(K ′′) = n0(l + 1) − 1. But K is a subgraph of K ′′ hence, λ(K) ≤ λ(K ′′) = n0(l + 1) − 1. �

It is not difficult to verify that the upper bound in Corollary 2.4 is smaller than the bounds derived from [1] mentioned at
the end of the Introduction. The problem of determining l in Corollary 2.4 is computationally complex as it is equivalent to
the NP-hard minimum makespan scheduling problem for identical machines where there are p jobs, q identical machines,
and the processing time incurred by scheduling job i in any machine is ni − 1, for i = 1, 2, . . . , p.

We use the following result in determining the λ-number for one more case with a spine of at least three vertices where
the upper bound in Corollary 2.4 does not apply.

Result 2.5. ([9]) If a graph contains three vertices with maximum degree ∆ ≥ 2 and one of them is adjacent to the other
two vertices, then its λ-number is at least ∆ + 2.

Corollary 2.6. Let n ≥ 3 and K = Amalg(Kn; Kn � K2, Kn � K2, . . . , Kn � K2) with n − 1 pages. Then λ(K) = 2n.

Proof. Since ∆(K) = 2n − 2 is achieved by the n ≥ 3 vertices on the spine, λ(K) ≥ ∆(K) + 2 = 2n by Result 2.5. To show
that λ(K) = ∆(K) + 2, it is sufficient to exhibit a 2n-labeling of K . Suppose K ′

= Amalg(Kn+1; Kn+1 � K2, Kn+1 � K2, . . . ,
Kn+1 � K2) with n − 1 pages. Since n + 1 > 3 and the number of pages is exactly (n + 1) − 2, Theorem 2.3 implies λ(K ′) ≤

2(n + 1) − 1 = 2n + 1. Consider the (2n + 1)-labeling of K ′ given by B(k) for k = 1, 2, . . . , n − 1, as defined in the proof of
Theorem 2.3. Let C(k) be the matrix obtained from B(k) by deleting its first row and subtracting 1 from each of its entries,
for k = 1, 2, . . . , n − 1. Fig. 2.4 contains examples of B(k) and C(k) for k = 1, 2, 3 when n = 4.

Note that the label 0 appears only once in each B(k) and is in its first row, therefore C(k) will only contain entries in
{0, 1, . . . , 2n}. For i = 1, 2, . . . , n−1, j = 1, 2, and k = 1, 2, . . . , n−1, assign the entry in row i, column j of C(k) to vertex
(i, j, k) of K . This labeling does not violate the distance conditions by construction so we can conclude that it is a 2n-labeling
of K as desired. �

Unfortunately, the upper bound given in Corollary 2.4 may still be significantly larger than the actual λ(K). For example,
if K = Amalg(K3; K3 � K4, K3 � K4, K3 � K2), then in Corollary 2.4 we have n = 3, q = 2, l = 4, and λ(K) ≤ 14. However,
λ(K) = 11 by Corollary 2.7.

Corollary 2.7. Let n ≥ 3 and m ≥ 4. If K = Amalg(Kn; Kn � Km, Kn � Km, . . . , Kn � Km, Kn � Km−2) has n pages with n − 1 of
them isomorphic to Kn � Km, then λ(K) = nm − 1.
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Fig. 2.5. B(5) defined in Corollary 2.7 when n = 5 and m = 6.

Fig. 2.6. M(k) used in Theorem 2.9 to label page k = 1, 2, . . . , p of K = Amalg(K2; K2 � Km, K2 � Km, . . . , K2 � Km) when m > 2 and p > 2.

Fig. 2.7. N(k) (resp., P(k)) used in Theorem 2.9 to label page k = 1, 2 of K = Amalg(K2; K2 � Km, K2 � Km) when m = 2 (resp.,m = 3).

Fig. 2.8. Q (k) used in Theorem 2.9 to label page k = 1, 2 of K = Amalg(K2; K2 � Km, K2 � Km) when m > 3.

Proof. Let K ′
= Amalg(Kn; Kn � Km, Kn � Km, . . . , Kn � Km) with n − 1 pages. Obviously, K ′ is a subgraph of K so λ(K) ≥

λ(K ′) = nm−1 by Theorem2.3. Recall the (nm−1)-labeling ofK ′ given by thematrices B(k) for k = 1, 2, . . . , n−1 as defined
in the proof of Theorem 2.3. Define B(n) to be thematrix obtained from B(n−1) by 1-rotating each of its columns, except for
column 0, and then deleting columns 1 andm−1. Extend the labeling of K ′ to a labeling of K , by assigning the entry in row i,
column j of B(n) to vertex (i, j, n) in the last page Kn � Km−2 of K . Techniques similar to the ones in the proof of Theorem 2.3
can be used to show that this extended labeling is an (nm − 1)-labeling of K . We leave the details to the reader for the sake
of brevity. Fig. 2.5 shows B(5) when n = 5 andm = 6 (refer to Fig. 2.3 for the corresponding B(k) for k = 1, 2, 3, 4). �

Up to this point, the focus was on the amalgamation of Cartesian products of complete graphs along a complete graph
with at least 3 vertices. We will now focus on the remaining instances where the spine contains exactly 2 vertices. The
following result will be used in the proof of Theorem 2.9.

Result 2.8. ([1]) Let G = Amalg(P2; P2 � Pn1 , P2 � Pn2 , . . . , P2 � Pnp) with p ≥ 3, nk ≥ 2 for k = 1, 2, . . . , p, where Pi is the
path on i vertices. Then λ(G) = 6 if p = 3; otherwise, λ(G) = p + 2.

The techniques used to show that the labelings presented in the proof of the next result are L(2, 1)-labelings are similar
to the ones used previously so the details will be left to the reader for the sake of brevity.

Theorem 2.9. Let K = Amalg(K2; K2 � Km, K2 � Km, . . . , K2 � Km) with p ≥ 2 pages and m ≥ 2. Then λ(K) = ∆(K) + 2 if
(m = 2 and p = 2, 3) or (m = 3 and p = 2); otherwise, λ(K) = ∆(K) + 1.

Proof. First note that ∆(K) = (m − 1)p + 1. Let us examine the case p > 2. If m = 2, then ∆(K) = p + 1 and since
K2 = P2, Result 2.8 implies λ(K) = 6 = ∆(K) + 2 if p = 3, and λ(K) = p + 2 = ∆(K) + 1 if p > 3. If m > 2, then assign
the entry in row i column j of M(k) of Fig. 2.6 to vertex (i, j, k) in page k of K for k = 1, 2, . . . , p. By inspection, this is an
((m−1)p+2)-labeling of K , so λ(K) ≤ (m−1)p+2 = ∆(K)+1. Obviously, λ(K) ≥ ∆(K)+1, therefore λ(K) = ∆(K)+1.

Now assume p = 2, that is K = Amalg(K2; K2 � Km, K2 � Km) so ∆(K) = 2m − 1. If m = 2 (resp., m = 3), assign the
entry in row i, column j of N(k) (resp., P(k)) of Fig. 2.7 to vertex (i, j, k) in page k of K , for k = 1, 2. By inspection, this is a
5-labeling (resp., 7-labeling) of K so λ(K) ≤ 5 = ∆(K) + 2 ifm = 2 (resp., λ(K) ≤ 7 = ∆(K) + 2 ifm = 3). An exhaustive
case discussion shows that λ(K) = ∆(K) + 2 when m = 2, 3. If m > 3, then assign the entry in row i, column j of Q (k) of
Fig. 2.8 to vertex (i, j, k) in page k of K , for k = 1, 2. By inspection, this is a (∆(K) + 1)-labeling of K so λ(K) ≤ ∆(K) + 1.
The equality holds as it is obvious that λ(K) ≥ ∆(K) + 1. �

Corollary 2.10. Let K = Amalg(K2; K2 � Kn1 , K2 � Kn2 , . . . , K2 � Knp) where p ≥ 2 and n1 ≥ ni ≥ 2 for i = 2, 3, . . . , p. Then
λ(K) ≤ (n1 − 1)p + 3 if (n1 = 2 and p = 2, 3) or (n1 = 3 and p = 2); otherwise, λ(K) ≤ (n1 − 1)p + 2.

Proof. The desired result follows from Theorem 2.9 by observing that K is a subgraph of K ′
= Amalg(K2; K2 � Kn1 , K2 � Kn1 ,

. . . , K2 � Kn1) with p pages and ∆(K ′) = (n1 − 1)p + 1. �
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3. Concluding remarks and directions for future research

We provided exact λ-numbers for two infinite classes of amalgamations of Cartesian products of complete graphs along
a complete graph when all the pages are isomorphic: one class in which the spine has exactly two vertices, and the other in
which the number of pages is at most the number of vertices in the spineminus one or two.We used these exact λ-numbers
to provide upper bounds for the λ-numbers of more general graphs. It would be interesting to determine under what con-
ditions these bounds are tight. Moreover, it may be fruitful to search for other families of amalgamations of graphs where
the λ-number coincides with the λ-number of one of its pages as was true here in Theorem 2.3 and Corollary 2.7.
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